首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new environmentally friendly inorganic pigments. Chemical compounds of the (Bi2O3)1–x(Er2O3)x type were synthetized. The host lattice of these pigments is Bi2O3 that is doped by Er3+ ions. The incorporation of doped ions provides interesting colours and contributes to an increase in the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments.  相似文献   

2.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new ecological inorganic pigments. Chemical compounds of the Bi2−xErx/2Zr3x/8O3 type were synthetized. The host lattice of these pigments is Bi2O3 that is doped by Er3+ and Zr4+ ions. The incorporation of doped ions provides interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. This paper also contains the results of the pigment characterization by X-ray powder diffraction and their colour properties.  相似文献   

3.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new colour inorganic pigments. Chemical compounds of the Bi2-xYx/2Zr3x/8O3 type were synthetised. The host lattice of these pigments is Bi2O3 that is doped by Y3+ and Zr4+ ions. The incorporation of doped ions provides interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. This paper also contains the results of the pigment characterization by X-ray powder diffraction and their colour properties.  相似文献   

4.
The synthesis of new pigments based on Bi2O3 is investigated because they give interesting orange hues and can substitute the pigments problematic from the environmental point of view. Chemical compounds of the Bi2–xZr3x/4O3 type were synthesized. The host lattice of these pigments is Bi2O3 that is doped by Zr4+ ions. The area of ZrO2 solubility in Bi2O3 at 800°C forming solid solution of both oxides was studied. The incorporation of doped ions provides interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments.  相似文献   

5.
A series of novel environmentally inorganic pigments based on Bi2O3 doped by metal ion Dy3+ has been developed and characterized using methods of thermal analysis, X-ray powder diffraction and by reflectance spectral data. The new pigments have been synthesized from mixtures containing Bi2O3 and Dy2O3 by traditional solid-state route. The incorporation of Dy3+ into crystal lattice Bi2O3 changes the colour from yellow-orange to orange. The band gap of phases with formula Bi2?xDyxO3, where x = 0.8, increases from 2.30 to 2.38 eV with growth of calcination temperature. The pigment Bi1.2Dy0.8O3 was also evaluated from the standpoint of influence of milling time on the colour properties and particle size. The simultaneous TG–DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. The results confirm the positive effect of lanthanide ions into Bi2O3 on thermal stability of prepared phases.  相似文献   

6.
Microstructure and conduction of ceramic composites Bi2CuO4 + xBi2O3 (x = 5, 10, 15, 20 wt %) near the eutectic melting point (770°C) are studied. Bismuth oxide, initially randomly distributed over the ceramics bulk, after quenching from temperatures exceeding the eutectic melting point, becomes localized at triple junctions and grain boundaries in Bi2CuO4, which is caused by wetting grain boundaries and forming a liquid-channel structure. The jumpwise change in the composites’ conductivity near 730 and 770°C caused by polymorphic transformation of Bi2O3 and the eutectic melting with simultaneous formation of a liquid-channel structure. Transport numbers of the oxygen ion are measured at 770°C by coulomb-volumetric method. The conduction by oxygen ions increases in the composites with decreasing average size of Bi2CuO4 crystallites.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 596–601.Original Russian Text Copyright © 2005 by Lyskov, Metlin, Belousov, Tret’yakov.  相似文献   

7.
The synthesis of new compounds based on Bi2O3 is investigated because they can be used as new ecological inorganic pigments. Chemical compounds of the (Bi2O3)1−x(Y2O3)x type were synthesized. The host lattice of these pigments is Bi2O3 that is doped by Y3+ ions. The incorporation of doped ions provides the interesting colours and contributes to a growth of the thermal stability of these compounds. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. This paper also contains the results of the pigment characterization by X-ray powder diffraction and their colour properties.  相似文献   

8.
Polymers doped with rare earth complexes are advantaged in film production for many applications in the luminescent field. In this luminescent polycarbonate (PC) films doped with diaquatris(thenoyltrifluoroacetonate)europium(III) complex [Eu(TTA)3(H2O)2] were prepared and their calorimetric and luminescent properties in the solid state are reported. The thermal behavior was investigated by utilization of differential scanning calorimetry (DSC) and thermogravimetry (TG). Due of the addition of rare earth [Eu(TTA)3(H2O)2] into PC matrix, changes were observed in the thermal behavior concerning the glass transition and thermal stability. Characteristic broadened narrow bands arising from the 5D0 → 7FJ transitions (J = 4−0) of Eu3+ ion indicate the incorporation of the Eu3+ ions in the polymer. The luminescent films show enhancement emission intensity with an increase of rare earth concentration in polymeric matrix accompanied by decrease in thermal stability.  相似文献   

9.
Composites ZrO2-(Bi2CuO4+ 20 wt % Bi2O3) (50–80 vol % ZrO2) are synthesized and their physicochemical properties are studied. It is demonstrated that the composites comprise triple-phase mixtures of ZrO2 of a monoclinic modification, Bi2CuO4, and solid solution Bi2?x Zr x O3 + x/2 and retain their mechanical strength up to 800°C. Impedance spectroscopy is used to examine their electroconductivity at 700–800°C in the interval of partial oxygen pressures extending from 37 to 2.1 × 104 Pa. Contributions made by electronic and ionic constituents to their overall conductivity are evaluated. The best specimens’ conductivity is ~0.01 S cm?1, with the electronic and ionic transport numbers nearly equal. The composite consisting of 50 vol % ZrO2 and 50 vol % (Bi2CuO4 + 20 wt % Bi2CuO4) is tested in the role of an oxygen-separating membrane. The selective flux of oxygen in the temperature interval 750–800°C amounts to (2.2–6.3) × 10?8 mol cm?2 s?1, testifying that these materials may be used as gas-separating membranes.  相似文献   

10.
In the Bi2O3-SiO2-V25++O5 system, single crystal solid solutions of the sillenite family of the general composition Bi24(Bi,Si,V)2O40 are obtained by a hydrothermal method and for the first time characterized by neutron and X-ray diffraction analysis. The tetrahedral position is found to contain vanadium ions with different formal charges (V4+ and V5+) responsible for green and orange colors, respectively, of the samples. For the first time, for some sillenites of this system dissymmetrization of the structure (a transition from the I23 space group into P23) is revealed, which is caused by the presence of several atoms in one crystallographic position and also by crystal growth conditions.  相似文献   

11.
This study investigates two lanthanide compounds (La3+ and Sm3+) obtained in water/ethyl alcohol solutions employing the anionic surfactant diphenyl-4-amine sulfonate (DAS) as ligand. Both sulfonates were characterized through IR, TG/DTG (O2 and N2). The thermal treatment of both compounds at 1273 K under air leaves residues containing variable percentages of lanthanide oxysulfide/oxysulfate phases shown by synchrotron high-resolution XRD pattern including the Rietveld analysis. The phase distributions found in the residues evidence the differences in the relative stability of the precursors.  相似文献   

12.
YBaCo4O7 compound is capable to intake and release a large amount of oxygen in the temperature range of 200–400°C. In the present study, the effect of Zn, Ga and Fe substitution for Co on the oxygen adsorption/desorption properties of YBaCo4O7 were investigated by thermogravimetry (TG) method. Due to fixed oxidation state of Zn2+ ions, the substitution of Zn2+ for Co2+ suppresses the oxygen adsorption of YBaCo4−xZnxO7. The substitution of Ga3+ for Co3+ also decreases the oxygen absorption capacity of YBaCo4−xGaxO7. This can be explained by the strong affinity of Ga3+ ions towards the GaO4 tetrahedron. Compared with Zn- and Ga-substituted samples, the drop of oxygen adsorption capacity is smallest for Fe-substituted samples because of the similar changeability of oxidation states of Co and Fe ions.  相似文献   

13.
The structure of solid high-conductance potassium electrolytes K1 − x Al1 − x TixO2 (x = 0.1; 0.2) at 25 and 575°C is studied by a powder neutron diffraction analysis with the application of full-profile Rietveld analysis. Inserting titanium ions removes in potassium aluminate the phase transition at 540°C and the conductance anisotropy typical for its low-temperature form. Both structures are identical (fcc lattice, space group Fd3m). Experiment and calculation coincide best under the assumption that the potassium sublattice is disordered. The conductance increase upon inserting ions Ti4+ is due, apart from stabilization of the fcc structure, to formation of additional potassium vacancies and larger channels for the migration of potassium cations (ions Ti4+ are larger than ions Al3+).__________Translated from Elektrokhimiya, Vol. 41, No. 7, 2005, pp. 878–883.Original Russian Text Copyright © 2005 by Burmakin, Voronin, Akhtyamova, Berger, Shekhtman.  相似文献   

14.
New inorganic compounds having the general formula (Bi2O3)1−x (Lu2O3) x (x ranges from 0.1 to 0.5) displaying orange colours have been synthesized by traditional solid-state route, as viable alternatives to lead, cadmium and chromium based yellow toxic inorganic pigments. The host lattice of these pigments is Bi2O3 that is doped by Lu3+ ions. The goal was to develop conditions for the synthesis of these compounds and to determine the influence of calcination temperature and lutetium content on their colouring effects. The simultaneous TG-DTA measurements were used for determination of the temperature region of the pigment formation and thermal stability of pigments. The pigments were also evaluated from the standpoint of their structure and particle sizes.  相似文献   

15.
A series of the mixed transition metal compounds, Li[(Ni1/3Co1/3Mn1/3)1–x-y Al x B y ]O2-z F z (x = 0, 0.02, y = 0, 0.02, z = 0, 0.02), were synthesized via coprecipitation followed by a high-temperature heat-treatment. XRD patterns revealed that this material has a typical α-NaFeO2 type layered structure with R3- m space group. Rietveld refinement explained that cation mixing within the Li(Ni1/3Co1/3Mn1/3)O2 could be absolutely diminished by Al-doping. Al, B and F doped compounds showed both improved physical and electrochemical properties, high tap-density, and delivered a reversible capacity of 190 mAh/g with excellent capacity retention even when the electrodes were cycled between 3.0 and 4.7 V.  相似文献   

16.
Tysonite solid solutions Bi1−x Ba x O y F3−x−2y in the BiF3-BiOF-BaF2 system were obtained by solid-phase synthesis in sealed copper tubes in an argon atmosphere at 873 K with subsequent quenching. The solid solutions were studied by X-ray diffraction, electron diffraction, and impedance spectroscopy. On the basis of X-ray powder diffraction data, the homogeneity ranges of the tysonite solid solutions were determined and the scheme of their location in the BiF3-BiOF-BaF2 system at 873 K was suggested. Aliovalent substitutions in both the cation and anion sublattices Ba2+ → Bi3+ and O2− → F made it possible to vary the concentration of anion vacancies. It was found that, at a high concentration of anion defects at 873 K, the hexagonal tysonite modification with space group P63/mmc is stable. With a decrease in the defect concentration, the trigonal tysonite modification with space group $ P\bar 3c1 $ P\bar 3c1 becomes stable. An ordered monoclinic tysonite-type modification BiO y F3 − 2y (0.13 < y < 0.23) was revealed. For the homogeneity ranges of all tysonite phases, dependences of the unit cell parameters and conductivity on the composition along the sections with a constant barium or oxygen content were reported. The most probable location of oxygen anions and anion vacancies in the tysonite structure is discussed.  相似文献   

17.
Ni0.5Zn0.5Fe2O4 nanofibers with addition of 0–5 wt% Bi2O3 were synthesized by calcination of the electrospun polyvinylpyrrolidone/inorganic composite nanofibers at the temperature below the melting point of Bi2O3. The effects of Bi2O3 addition on the phase structure, morphology and magnetic properties of the nanofibers were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, selected area electron diffraction and vibrating sample magnetometer. It is found that the nanofiber diameter, crystallite size and magnetic parameters can be effectively tuned by simply adjusting the amount of Bi2O3 addition. The average diameter of Ni0.5Zn0.5Fe2O4 nanofibers doped with different contents of Bi2O3 ranges from 40 to 63 nm and gradually decreases with increasing Bi2O3 content. The addition of Bi2O3 does not induce the phase change and all the samples are a single-phase spinel structure. The amorphous Bi2O3 tends to concentrate on the nanoparticle surface and/or grain boundary and can retard the particles motion as well as the grain growth, resulting in a considerable reduction in grain size compared to the pristine sample. The specific saturation magnetization and coercivity of the nanofibers gradually decrease with the increase of Bi2O3 amount. Such behaviors are explained on the basis of chemical composition, surface effect, domain structure and crystal anisotropy.  相似文献   

18.
The effect of synthesis conditions, the nature of components, and the ratio between the components on the phase composition, the texture, and the redox and catalytic properties of the Ce-Zr-O, Ce-Zr-M1-O (M1 = Mn, Ni, Cu, Y, La, Pr, or Nd), N/Ce-Zr-O (N = Rh, Pd, or Pt), and Pd/Ce-Zr-M2-O/Al2O3 (M2 = Mg, Ca, Sr, Ba, Y, La, Pr, Nd, or Sm) was considered. A cubic solid solution with the fluorite structure was formed on the introduction of <50 mol % zirconium into CeO2, and the stability of this solid solution depended on preparation procedure and treatment conditions. The presence of transition or rare earth elements in certain concentrations extended the range of compositions with the retained fluorite structure. The texture of the Ce-Zr-O system mainly depended on treatment temperature. An increase in this temperature resulted in a decrease in the specific surface area of the samples. The total pore volume varied over the range of 0.2–0.3 cm3/g and depended on the Ce/Zr ratio. The presence of transition or rare earth elements either increased the specific surface area of the system or made it more stable to thermal treatment. The introduction of the isovalent cation Zr4+ into CeO2 increased the number of lattice defects both on the surface and in the bulk to increase the mobility of oxygen and facilitate its diffusion in the Ce1 − x Zr x O2 lattice. The catalytic properties of the Ce-Zr-M1-O or N/Ce-Zr-M2-O systems were due to the presence of anion vacancies and the easy transitions Ce4+ ai Ce3+, M12n+ ai M1 n+, and N δ+N 0 in the case of noble metals.  相似文献   

19.
Ferroelectric thin films of Nd and Mn co-doped bismuth titanate, Bi3.15Nd0.85Ti3−x Mn x O12 (BNTM) (x = 0–0.1), were fabricated on Pt/TiO2/SiO2/Si(100) substrates by a sol–gel technique. The BNTM films had a polycrystalline perovskite structure and uniform and dense surface morphologies. A lattice distortion was observed in the BNTM films due to Mn ion doping. The ferroelectric measurement of the films indicated that the values of coercive field (E c ) decreased gradually with the increase of the Mn content (x), however, the remanent polarization (P r ) increase firstly and then decrease with the increase of x. The sample with x = 0.05 had optimum electrical properties and a maximum 2P r value. The 2P r and 2E c values of the film at a maximum applied electric field of 400 kV/cm were 38.3 μC/cm2 and 180 kV/cm, respectively. Moreover, this BNTM capacitors did not show fatigue behaviors after 1.0 × 1010 switching cycles at a frequency of 1 MHz, suggesting a fatigue-free character. The main reason for the increase of the 2P r and the decrease of the 2E c might be attributed to the lattice distortion in BNTM films due to Mn ion doping.  相似文献   

20.
Eu2+/Dy3+-codoped BaAl2O4 phosphors were prepared by conventional solid-state reaction with boric acid flux. The effects of boric acid on structural and luminescent properties of BaAl2O4:(Eu2+, Dy3+) were investigated. The crystallinity of BaAl2O4 improved with increasing amount of H3BO3. Incorporation of Eu2+ and Dy3+ ions into effective lattice sites was promoted by H3BO3 addition. As a result, Eu2+ emission in BaAl2O4 was greatly enhanced by H3BO3, and the duration of persistent luminescence increased with the amount of H3BO3. However, the decay lifetime of persistent luminescence was not strongly influenced by the amount of H3BO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号