首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between amphiphilic block copolymers and lipids are of medical interest for applications such as drug delivery and the restoration of damaged cell membranes. A series of monodisperse poly(ethylene oxide)-poly(butylene oxide) (EOBO) block copolymers were obtained with two ratios of hydrophilic/hydrophobic block lengths. We have explored the surface activity of EOBO at a clean interface and under 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayers as a simple cell membrane model. At the same subphase concentration, EOBO achieved higher equilibrium surface pressures under DPPC compared to a bare interface, and the surface activity was improved with longer poly(butylene oxide) blocks. Further investigation of the DPPC/EOBO monolayers showed that combined films exhibited similar surface rheology compared to pure DPPC at the same surface pressures. DPPC/EOBO phase separation was observed in fluorescently doped monolayers, and within the liquid-expanded liquid-condensed coexistence region for DPPC, EOBO did not drastically alter the liquid-condensed domain shapes. Grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity (XRR) quantitatively confirmed that the lattice spacings and tilt of DPPC in lipid-rich regions of the monolayer were nearly equivalent to those of a pure DPPC monolayer at the same surface pressures.  相似文献   

2.
ABA-type block copolymers of poly(trimethylene carbonate) with poly(ethylene glycol) (Mn 6820), PTMC-b-PEG-b-PTMC, were synthesized by the ring-opening polymerization of 1,3-dioxan-2-one (trimethylene carbonate) in the presence of poly-(ethylene glycol) with stannous octoate catalyst, and the copolymers with various compositions were obtained. The PTMC-b-PEG-b-PTMC copolymers were characterized with Fourier transform infrared and nuclear magnetic resonance spectroscopies. The intrinsic viscosities of resulting copolymers increased with the increase of 1,3-dioxan-2-one content in feed while the molar ratio of monomer over catalyst kept constant. It has been observed that the glass transition temperature (Tg) of the PTMC segments in copolymers, recorded from differential scanning calorimetry, was dependent on the composition of copolymers. The melting temperature (Tm) of PEG blocks in copolymer was lower than that of PEG polymer, and then disappeared as the length of PTMC blocks increased. The results of dynamic contact angle measurement clearly revealed that the hydrophilicity of resulting copolymers increased greatly with the increase of PEG content in copolymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 695–702, 1998  相似文献   

3.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

4.
Surface-grafted block copolymer brushes with continuous composition gradients containing poly(poly(ethylene glycol) monomethacrylate) (P(PEGMA)) and poly(N-isopropylacrylamide) (PNIPAAm) chains were fabricated by integration of the surface-initiated atom transfer radical polymerization (SI-ATRP) and continuous injection method.Three types of copolymer gradients were prepared: (1) a uniform P(PEGMA) layer was block copolymerized with a gradient PNIPAAm layer (PP1);(2) a gradient P(PEGMA) layer was block copo...  相似文献   

5.
Ralstonia eutropha was cultivated in a culture medium supplemented with ethylene glycol (EG), which is known to act as a chain transfer agent in the production of poly(3-hydroxybutyrate) (PHB). The PHB extracted from the bacterial cells was analyzed by 1H and 31P NMR spectroscopies and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The addition of EG exerted a remarkable influence on the mass of production and molecular weight of PHB, and then was found to result in chain transfer and termination reactions. MALDI-TOF MS of the partially hydrolyzed PHB revealed that either succinate or glutarate combined with the hydroxyl terminals of PHB as polymerization starters. From 31P NMR analysis, the carboxyl groups of the succinyls and glutaryls held in the terminals of the isolated PHB were found to be capped with EG, giving the telechelic polyester with hydroxy functionalities. Based on these results, we propose a plausible mechanism of enzymatic polymerization in the microbial PHB synthesis in the presence of EG.  相似文献   

6.
用三乙胺和双端氨基聚乙二醇分别引发经酯化、环化等处理的谷氨酸开环聚合制备聚谷氨酸苄酯(PBLG)和聚谷氨酸苄酯-聚乙二醇-聚谷氨酸苄酯嵌段共聚物(PBLG-PEG-PBLG,GEG)。采用圆二色光谱对聚合物溶液的旋光性进行分析,以确定共聚物中PBLG嵌段的构型和含量。结果表明,均聚物和共聚物中的PBLG嵌段都以α-螺旋构型存在,中间的PEG不扰乱其构型,通过聚合物的圆二色性(circular dichroism,CD)计算出的PBLG嵌段含量与核磁共振(nuclear magnetic resonance,NMR)所得结果基本一致。  相似文献   

7.
Block copolymers of poly(N-isovaleryl ethyleneimine) (PiVEI) and poly(ethylene glycol) (PEG) were synthesized by coupling previously prepared blocks of PEG ditosylate with the dianion of the dihydroxy PiVEI. On the average four blocks coupled together to form the final block polymer. The PiVEI blocks crystallized with the same melting points as in the homopolymer. This restricted the mobility of the PEG blocks and they did not crystallize unless cooled well below room temperature. The mechanical properties of cast films were quite good with a tensile strength of 77 kg/cm2 and an elongation of 120%. The swelling of unoriented and oriented films with water was studied. The unoriented polymer absorbed about its own volume of water, even though PEG comprised only 40% of the total polymer.  相似文献   

8.
Poly(ϵ-caprolactone)–poly(ethylene glycol)–poly(ϵ-caprolactone) triblock copolymers (PECL) covering a wide range of poly(ethylene glycol) (PEG) lengths were synthesized with alkali metal alkoxide derivatives of poly(ethylene glycol). The effects of various factors, such as amount of the initiator, reaction time and temperature, polarity of solvent, length of PEG segment, and counterion on the polymerization were investigated. The copolymers were characterized by 1H-NMR, IR, GPC, and DSC. It was found that THF system is superior to toluene system. The conversion of the monomer increased with increase of the initiator concentration. High molecular weight of the copolymer and high conversion of the monomer was obtained at below 30°C within 5 min. The polymerization process was studied by GPC and the coexistence of propagation and transesterification reaction was found, which leaded to relatively broad molecular weight distribution of the copolymers. © 1997 John Wiley & Sons, Inc.  相似文献   

9.
A new type of biodegradable polymer material, poly(caprolactone)–poly(ethylene glycol) block copolymer (PCL-b-PEG), was synthesized by means of direct copolycondensation of ε-caprolactone with poly(ethylene glycol) in the presence of a Ti(OBu)4 catalyst. The degradability of the polycaprolactone was improved by introducing a PEG component into it. The degradation of PCL-b-PEG copolymer increase with a decreasing crystallinity of the copolymer, and can be controlled by adjusting the component ratio of the copolymer.  相似文献   

10.
Two synthetic ways were experimented to prepare new architectures of block copolymers made of poly(ethylene glycol) (PEG) and poly(methylthiirane). The coupling of both blocks conveniently end-capped as well as anionic polymerization of methylthiirane initiated by PEG-thiols gave readily the copolymers. Their characterization by 1H NMR, SEC and IR confirmed the expected structures.  相似文献   

11.
12.
13.
14.
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide),PEG-b-(PNIPAM)_2,were successfully synthesized through atom transfer radical polymerization(ATRP).A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether(PEG).The copolymers were obtained via the ATRP of N-isopropylacrylamide(NIPAM) at 30℃with CuCl/Me_6TREN as a catalyst system and DMF/H_2O(v/v = 3:1) mixture as solvent.The resulting copo...  相似文献   

15.
The thermal degradation of an amphiphilic block copolymer poly(ethylene)-b-poly(ethylene oxide)-carboxylic acid terminated (PE-b-80%PEO–CH2COOH) and its salt obtained as intermediary product from chemical oxidation of the end group of poly(ethylene)-b-poly(ethylene oxide) (PE-b-80%PEO) has been studied using a thermogravimetric mass spectrometry (TG/MS) coupled system. The isothermal fragmentation of PE-b-80%PEO–CH2COOH showed a more complex fragmentation pattern than PE-b-80%PEO owing to the simultaneous occurrence of the polyether block and the carboxylic end group fragmentations. This led to the appearance of four overlapping ion current peaks of fragments with m/z 44 and two peaks relative to m/z 18 at different times by acid-terminated copolymer. For the PE-b-80%PEO copolymer, two ion current peaks associated to m/z 44 and one large peak relative to m/z 18 fragments were detected. The intermediary product (PE-b-80%PEO–CH2COO K+) showed differences related to the fragmentation behavior. It has more defined ion current signals and presented characteristic peaks attributed to m/z 43 fragment at the very beginning of the thermal degradation process, which it not detected in the acid copolymer.  相似文献   

16.
The synthesis of the poly(para-phenyleneethynylene)-block-poly(ethylene oxide) block copolymer (PPE-b-PEO) ( 1 ) via condensation of endfunctionalized poly(para-phenyleneethynylene) (PPE) ( 5 ) and poly(ethylene oxide) monomethyl ether (PEO) is reported. This is achieved by the initial synthesis of a PPE homopolymer with quantitative terminal functionalization, as proven by 1H NMR and field desorption mass spectrometry (FD-MS). Reaction of the latter with PEO affords the block copolymer 1 , which was characterized by 1H NMR spectroscopy, FD-MS and gel permeation chromatography (GPC). Furthermore it is shown that matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS) is a suitable method to investigate PPE-b-PEO with respect to molecular weights and copolymer composition.  相似文献   

17.
To explore the potential of a star-shaped 8-armed poly(ethylene glycol)35K-block-poly(L-lactide)37K (8-armed PEG35K-b-PLLA37K: M(n) of PEG = 35 000, M(n) of PLLA = 37 000) film as a novel bioabsorbable adhesion-prevention membrane, the water structure, surface contact angle, protein adsorption, and cell and platelet anti-adhesion properties of such a hydrated film are investigated. Based on the results, it is found that the 8-armed PEG35K-b-PLLA37K film exhibits a biologically inert surface, which is the result of a large number of PEG chains and a free water layer on the film surface. This leads to a reduction in protein absorption and cell and platelet adhesion onto the film surface. This implies that the star-shaped 8-armed PEG35K-b-PLLA37K film can be utilized as a novel bioabsorbable adhesion-prevention membrane.  相似文献   

18.
Block copolymer micelles with aldehyde functionality were prepared in aqueous medium by dialyzing the N,N-dimethylacetamide solution of α-acetoxy-poly(ethylene glycol)-poly( , -lactide) block copolymer (acetal-PEG–PDLLA) against water, followed by mild acid treatment to convert the acetal moiety of the micelle to the aldehyde group. Peptidyl ligands (phenylalanine (Phe) and tyrosyl–glutamic acid (Tyr–Glu)) were then chemically conjugated to the micelle through Schiff base formation and successive reductive amination using NaBH3CN. Micelles with peptidyl ligands thus prepared have a size of approximately 40 nm with extremely narrow distribution (μ2/ 2<0.1) based on cumulant analysis of dynamic light scattering. A maximum 53% of the PEG-chain end of the micelle could be converted into peptidyl groups. Zeta potential values of Tyr–Glu derivatized micelles were well correlated with the amount of conjugated ligands, controllable over the range of 0 to−9 mV in sodium phosphate buffer (pH 7.4, 10 mM). These micelles with peptidyl ligands may have a utility for exploring the effect of the surface charge on the pharmacokinetic behavior of particulate systems as well as for modulated drug delivery where cellular peptidyl receptors play a substantial role.  相似文献   

19.
The solubility nature of many medicines presents a challenge for successful delivery of these drugs to the body. Polymeric carriers are potentially viable as vessels for both the protection and transport of these medicinal substances. In an effort to generate polymeric materials for this desired application, A‐B‐A triblock copolymers have been synthesized with a central block composed of hydrophilic poly (ethylene glycol) (PEG) and flanking hydrophobic sequences composed of five valine units terminated with end groups of varying hydrophobicity. These copolymers were constructed by adding amino acids stepwise to the hydrophilic block using solution phase chemistry. The self‐assembly behavior of all polymers was investigated using fluorimetry with a pyrene probe. In general, copolymers with more hydrophobic end groups exhibited lower critical aggregation concentrations (CACs). Fmoc‐terminated copolymers displayed the lowest CAC of 0.032 mg/mL and demonstrated little cytotoxicity when exposed to SW620 colorectal cancer cells. Transmission electron micrographs show the presence of multiple compartments within these spherical assemblies, which may prove useful in encapsulating medicinal substances. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5381–5389, 2008  相似文献   

20.
We focus on the role of water in a protein-resistant poly(ethylene glycol) (PEG) layer. Using the combination of two experimental techniques, namely, the extended surface forces apparatus and the quartz crystal microbalance, we demonstrate that the water content inside these surface-grafted layers is over 80 vol % while the conformational space of the PEG chains is significantly modulated in water. Discrete and reversible film thickness transitions of 1.25 A size are shown to occur when the film is compressed, a finding that suggests a high degree of organization in the PEG/water complex. The results are discussed in terms of the excellent protein resistance properties of this type of surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号