首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ion mobility spectrometers (IMS) are used widely to detect explosives, illegal drugs and chemical warfare agents. More than 70.000 units are under operation world-wide. One of the insufficiencies for broad use of different types of ion mobility spectrometers for civilian applications in the scientific or commercial world is the self- or company-made data format, thus complicating any further step towards a consistent evaluation. The problem starts with rather simple visualisation software for rather complex data structures. We describe a Java based software platform with respect to visualisation of IMS data, especially data of IMS coupled to Multi-capillary columns (MCC).  相似文献   

2.
Ion mobility spectrometry (IMS) is a widespread separation technique used in various research fields. It can be coupled to liquid chromatography–mass spectrometry (LC–MS/MS) methods providing an additional separation dimension. During IMS, ions are subjected to multiple collisions with buffer gas, which may cause significant ion heating. The present project addresses this phenomenon from the bottom-up proteomics point of view. We performed LC–MS/MS measurements on a cyclic ion mobility mass spectrometer with varied collision energy (CE) settings both with and without IMS. We investigated the CE dependence of identification score, using Byonic search engine, for more than 1000 tryptic peptides from HeLa digest standard. We determined the optimal CE values—giving the highest identification score—for both setups (i.e., with and without IMS). Results show that lower CE is advantageous when IMS separation is applied, by 6.3 V on average. This value belongs to the one-cycle separation configuration, and multiple cycles may supposedly have even larger impact. The effect of IMS is also reflected in the trends of optimal CE values versus m/z functions. The parameters suggested by the manufacturer were found to be almost optimal for the setup without IMS; on the other hand, they are obviously too high with IMS. Practical consideration on setting up a mass spectrometric platform hyphenated to IMS is also presented. Furthermore, the two CID (collision induced dissociation) fragmentation cells of the instrument—located before and after the IMS cell—were also compared, and we found that CE adjustment is needed when the trap cell is used for activation instead of the transfer cell. Data have been deposited in the MassIVE repository (MSV000090944).  相似文献   

3.
Multi-Capillary Column coupled to an Ion Mobility Spectrometer (MCC/IMS) is widely used for Breath Analysis. During this analysis a part of room air variations, also operational background emissions have to be considered. In the study reported here we analyze the background emissions of two different intubation methods, an endotracheal tube and a laryngeal mask used in anesthesia. Also a straight connector used to collect the patients breath is studied. Laboratory measurements have been carried out with MCC/IMS and also with a Gas Chromatograph—Mass Selective Detector (GC/MSD), showing different plastic compositions and MCC/IMS chromatographs. Patients breath measurements were carried out while the patients were anesthetized and intubated. In the breath analysis of patients under anesthesia one specific peak of the endotracheal tube has been found, and also two specific peaks from the laryngeal mask. Nonspecific peak due to the straight connector has also been found, showing its suitability for sampling collection.  相似文献   

4.
Ion mobility spectrometry coupled to multi capillary columns (MCC/IMS) combines highly sensitive spectrometry with a rapid separation technique. MCC\IMS is widely used for biomedical breath analysis. The identification of molecules in such a complex sample necessitates a reference database. The existing IMS reference databases are still in their infancy and do not allow to actually identify all analytes. With a gas chromatograph coupled to a mass selective detector (GC/MSD) setup in parallel to a MCC/IMS instrumentation we may increase the accuracy of automatic analyte identification. To overcome the time-consuming manual evaluation and comparison of the results of both devices, we developed a software tool MIMA (MS-IMS-Mapper), which can computationally generate analyte layers for MCC/IMS spectra by using the corresponding GC/MSD data. We demonstrate the power of our method by successfully identifying the analytes of a seven-component mixture. In conclusion, the main contribution of MIMA is a fast and easy computational method for assigning analyte names to yet un-assigned signals in MCC/IMS data. We believe that this will greatly impact modern MCC/IMS-based biomarker research by “giving a name” to previously detected disease-specific molecules.  相似文献   

5.
Modern differential mobility spectrometers (DMS) produce complex and multi-dimensional data streams that allow for near-real-time or post-hoc chemical detection for a variety of applications. An active area of interest for this technology is metabolite monitoring for biological applications, and these data sets regularly have unique technical and data analysis end user requirements. While there are initial publications on how investigators have individually processed and analyzed their DMS metabolomic data, there are no user-ready commercial or open source software packages that are easily used for this purpose. We have created custom software uniquely suited to analyze gas chromatograph / differential mobility spectrometry (GC/DMS) data from biological sources. Here we explain the implementation of the software, describe the user features that are available, and provide an example of how this software functions using a previously-published data set. The software is compatible with many commercial or home-made DMS systems. Because the software is versatile, it can also potentially be used for other similarly structured data sets, such as GC/GC and other IMS modalities.  相似文献   

6.
With optimized geometry and operating parameters both IMS selectivity and sensitivity can be significantly increased. However, finding these parameters and geometry requires an accurate knowledge of the electrical field and the ion concentration within the IMS at any time of operation. Furthermore, the ion loss at metallic surfaces and space charge effects caused by the moving ion cloud must be considered. This is particularly true when using non-radioactive electron emitters which generate a comparably high space charge density at electron currents similar to radioactive beta-sources due to their smaller ionization volume. This can lead to a reduced IMS resolution mainly caused by coulomb repulsion. In this work a transient model which enables a detailed view on the electric field within the IMS considering ion diffusion and migration as well as ion loss and coulomb repulsion is presented. This finite element model provides excellent agreement between simulated IMS spectra and experimental data especially when considering space charge effects and coulomb repulsion respectively. The model is used to design a short drift tube IMS with significantly improved resolution. Furthermore, this model allows considering ion-ion and ion-neutral reactions, such as ion generation, charge transfer reactions and ion-ion recombination. Moreover, fluid dynamics can be considered as required for modeling aspiration type IMS.  相似文献   

7.
More than 90,000 ion mobility spectrometer (IMS) are in use worldwide, mostly without coupling to chromatographic columns for pre-separation of the neutrals entering the ionization region of the IMS. Related to new application fields e.g. breath analysis or determination of volatile metabolites of cell cultures and bacteria/fungi an effective way for pre-separation is needed strongly. The acceptance of IMS within the analytical world will be enhanced by supplying automatic procedures for peak finding, referencing and database-related identification of the signals within IMS-Chromatograms. Some papers are available concerning the internal loop of relation of IMS signals between different instruments, alignment for automatic interpretation with respect of reference analytes used and interpolation within the different members of classes of analytes in case that some missed e.g. within a homologous row of chemicals. With respect to inter comparison of recent findings using MCC/IMS and GC/MS experiments effective alignment procedures are developed. In the present paper we describe a software tool making the visualization of the total ion current (TIC) from chromatograms of GC/MSD possible in direct relation to the corresponding IMS-Chromatogram of MCC/IMS. Thus, parallel measurements of e.g. samples of human breath using MCC/IMS and thermodesorption (TD)-GC/MSD become comparable directly. On the other hand, the direct identification and relation of so far unknown peaks found in IMS-Chromatograms will be supported using the TIC results of GC/MSD.  相似文献   

8.
Ethyl parathion and toluene 2,4-diisocyanate (2,4-TDI) vapors were generated using a vapor generation system that was designed for the evaporation of liquid samples at known flow rates. The vapor generation of parathion and 2,4-TDI posed a challenge because of their low volatility and tendency to absorb into surfaces of the vapor generation system. Experimental concentration of parathion was determined using gas chromatography-mass spectrometry (GC-MS). 2,4-TDI was derivatized with 1-(2-pyridyl)piperazine to urea derivative which concentration was analyzed using high performance liquid chromatography (HPLC). In addition, in combination with vapor generator, aspiration IMS was used for monitoring ion mobility cell (IMCell) and semiconductor cell (SCCell) responses to parathion and 2,4-TDI vapors. The chromatographic results correlated well with the IMCell response data, showing high specificity of IMS to parathion and 2,4-TDI. The concentrations of parathion and 2,4-TDI at the detection limit of IMS were significantly lower than IDLH threshold values of parathion or 2,4-TDI, demonstrating high sensitivity of IMS to both compounds. The IMS patterns of both chemicals and the influence of humidity on IMCell and SCCell sensitivity were analyzed.  相似文献   

9.
Ion mobility spectrometry (IMS) is an analytical technique used for fast and sensitive detection of illegal substances in customs and airports, diagnosis of diseases through detection of metabolites in breath, fundamental studies in physics and chemistry, space exploration, and many more applications. Ion mobility spectrometry separates ions in the gas‐phase drifting under an electric field according to their size to charge ratio. Ion mobility spectrometry disadvantages are false positives that delay transportation, compromise patient's health and other negative issues when IMS is used for detection. To prevent false positives, IMS measures the ion mobilities in 2 different conditions, in pure buffer gas or when shift reagents (SRs) are introduced in this gas, providing 2 different characteristic properties of the ion and increasing the chances of right identification. Mobility shifts with the introduction of SRs in the buffer gas are due to clustering of analyte ions with SRs. Effective SRs are polar volatile compounds with free electron pairs with a tendency to form clusters with the analyte ion. Formation of clusters is favored by formation of stable analyte ion‐SR hydrogen bonds, high analytes' proton affinity, and low steric hindrance in the ion charge while stabilization of ion charge by resonance may disfavor it. Inductive effects and the number of adduction sites also affect cluster formation. The prediction of IMS separations of overlapping peaks is important because it simplifies a trial and error procedure. Doping experiments to simplify IMS spectra by changing the ion‐analyte reactions forming the so‐called alternative reactant ions are not considered in this review and techniques other than drift tube IMS are marginally covered.  相似文献   

10.
Imaging mass spectrometry (IMS) is a powerful tool for detecting and visualizing biomolecules in tissue sections. The technology has been applied to several fields, and many researchers have started to apply it to pathological samples. However, it is very difficult for inexperienced users to extract meaningful signals from enormous IMS datasets, and the procedure is time-consuming. We have developed software, called IMS Convolution with regions of interest (ROI), to automatically extract meaningful signals from IMS datasets. The processing is based on the detection of common peaks within the ordered area in the IMS dataset. In this study, the IMS dataset from a mouse eyeball section was acquired by a mass microscope that we recently developed, and the peaks extracted by manual and automatic procedures were compared. The manual procedure extracted 16 peaks with higher intensity in mass spectra averaged in whole measurement points. On the other hand, the automatic procedure using IMS Convolution easily and equally extracted peaks without any effort. Moreover, the use of ROIs with IMS Convolution enabled us to extract the peak on each ROI area, and all of the 16 ion images on mouse eyeball tissue were from phosphatidylcholine species. Therefore, we believe that IMS Convolution with ROIs could automatically extract the meaningful peaks from large-volume IMS datasets for inexperienced users as well as for researchers who have performed the analysis.  相似文献   

11.
The essential necessity of the comparison of peaks of different IMS-Chromatograms requires the development of software procedures to search in rather large databases of different measurements for the selected characteristic peaks. The procedure of selecting an area in the IMS-Chromatogram directly, of searching in particular data-sets related to different measurements and of visualizing the findings with respect to a comparison of the peak characteristics will be presented in detail. Eucalyptol as an analyte frequently found in human breath samples was investigated as an example and data obtained from MCC/IMS were used for the application of the peak comparison procedure.  相似文献   

12.
Bacterial cold water disease, caused by Flavobacterium psychrophilum, is a serious problem in the aquaculture industry worldwide. Several methods to prevent and treat cold water disease have been studied. Although detection at the early stage of F. psychrophilum infection is very important for the prevention and treatment of cold water disease, an effective detection method has not yet been developed. The use of flow cytometry (FCM) for the rapid determination of bacterial cell numbers with high sensitivity is beginning to attract attention. Immunomagnetic separation (IMS) has also been used to detect F. psychrophilum. The purpose of the present study was to develop a method to quickly determine the number of bacterial cells by combining the FCM and IMS methods. Because samples can be more effectively concentrated using smaller magnetic beads and stronger magnetism, we used carbonyl iron powder as the magnetic beads for the IMS. The detection level of F. psychrophilum using FCM combined with IMS was 5 orders lower than that using FCM without IMS. The values determined using FCM combined with IMS strongly correlated with those obtained using the colony-counting method, in the range of approximately 10–108 colony-forming units per milliliter. One FCM assay could be completed within 60 s and the total assay time, including sample preparation, was less than 2 h. The combined method of FCM with IMS developed in this study can be used reliably for the rapid detection of F. psychrophilum.  相似文献   

13.
Major questions of all investigations of analytes using ion mobility spectrometer (IMS) are peak finding and in case of proper finding the reliable referencing. In case of rather complex mixtures like human breath or water impurities, automatic procedures should be found to support peak finding and referencing. A visualisation software tool will be described bringing the summarised results of peak finding methods and the reference lists used as input to data bases together in a single system. The details of the software developed are described briefly and the procedures behind are referenced.  相似文献   

14.
In standalone ion mobility spectrometry (IMS) instruments, the effect of drift gas turbulence reduces the sensitivity and resolution of the instrument. A traditional ion detector constructed with a Faraday plate and used to detect ions in an IMS is positioned at the end of the drift region. Drift gas flowing through this detector may introduce turbulence near the detector, possibly affecting the sensitivity and resolution of the device. To address this problem, a novel Faraday detector with a double layer structure was constructed. A number of dense and staggered holes were created on each layer of the detector. This design enabled the drift gas to pass through the holes of the detector, and the staggered nature of holes in the detector ensured that the ions could be detected. Theoretical simulations were conducted using the finite element method to obtain velocity distributions for both a standard Faraday detector and the modified Faraday detector. The results indicated that the novel ion detector created a homogenous gas under at high inlet flow rate while turbulence was still evident for the traditional Faraday detector. When the inlet flow rate was 1000 mL/min, the range of the unstable region of the drift gas in the axis of the drift tube with the novel ion detector was reduced by 97% relative to that for the traditional detector. The data suggests that due to such gains, sensitivity and resolution may be improved for standalone IMS instruments.  相似文献   

15.
Ion mobility spectrometry (IMS) gains increased pharmaceutical interest as an analytical technique for the verification of equipment cleaning. Using a fractional factorial design, we developed an IMS method for talarozole, which represents a new generation of retinoic acid metabolism blocking agents (RAMBA) that can be used for the treatment of different dermatological diseases, such as psoriasis and acne. Using a Smiths Detection Ionscan-LS and the optimal IMS settings obtained, talarozole showed a drift time of 16.648 ms, corresponding to a reduced ion mobility K0 of 1.072 cm²V?1s?1. Total analysis times below 1 min were achieved. Talarozole was well separated in the plasmagram from other azole compounds and the limit of detection was found to be 43 ng/ml. Swab samples collected from steel and glass plates were successfully analyzed, thereby showing that IMS is indeed a suitable technique for the quantitative analysis of talarozole in cleaning quality control.  相似文献   

16.
Sample collection for Ion Mobility Spectrometry (IMS) analysis is typically completed by swiping a collection wipe over a suspect surface to collect trace residues. The work presented here addresses the need for a method to measure the collection efficiency performance of surface wipe materials as a function of the number of times a wipe is used to interrogate a surface. The primary purpose of this study is to investigate the effect of wipe reuse, i.e., the number of times a wipe is swiped across a surface, on the overall particle collection and IMS response. Two types of collection wipes (Teflon coated fiberglass and Nomex) were examined by swiping multiple times, ranging from 0 to 1000, over representative surfaces that are common to security screening environments. Particle collection efficiencies were determined by fluorescence microscopy and particle counting techniques, and were shown to improve dramatically with increased number of swiping cycles. Ion mobility spectrometry was used to evaluate the chemical response of known masses of explosives (deposited after reusing wipes) as a function of the wipe reuse number. Results show that chemical response can be negatively affected, and greatly depends upon the conditions of the surface in which the wipe is interrogating. For most parameters tested, the PCE increased after the wipe was reused several times. Swiping a dusty cardboard surface multiple times also caused an increase in particle collection efficiency but a decrease in IMS response. Scanning electron microscopy images revealed significant surface degradation of the wipes on dusty cardboard at the micrometer spatial scale level for Teflon coated wipes. Additionally, several samples were evaluated by including a seven second thermal desorption cycle at 235°C into each swipe sampling interval in order to represent the IMS heating cycle. Results were similar to studies conducted without this heating cycle, suggesting that the primary mechanism for wipe deterioration is mechanical rather than thermal.  相似文献   

17.
Ion mobility spectrometry (IMS) is a well known field technique for the detection of various materials such as explosives and narcotics. IMS has been used for the detection and identification of nicotine, and this paper describes a simple preparation method and analysis using an Ionscan 500DT which could be used in a field environment for the detection of nicotine in e-liquids. E-liquids containing nicotine are presently a topic of much debate in many countries and their shipment across the Canadian border is prohibited. The method described here would allow border officers or any other operators of IMS instruments to use this technique to correctly determine the presence or absence of nicotine in the e-liquid; this would allow the timely importation of the e-liquids with no nicotine and restrict the laboratory analysis only to those liquids containing nicotine. The IMS method has been used on a number of samples received from manufacturers of e-liquids as well as samples seized at the border. The results of the IMS analysis correspond well with those obtained using a Gas Chromatograph – Mass Spectrometer (GC-MS) method of analysis for nicotine.  相似文献   

18.
An expanded theory for the resolving power of a linear ion mobility spectrometer (IMS) is derived. By definition, the resolving power is directly proportional to the total drift time for the ion through the drift tube divided by the full-width-at-half-height (FWHH) of the observed ion mobility peak. Two approaches to theoretically estimating these two parameters are possible, depending on the operating parameters of the IMS cell. The drift time is given by the first moment of the IMS response. If the electric fields (assumed uniform) are equal in both the shutter/aperture and aperture/collector region, the FWHH is given by a difference in error functions. If the electric fields (again assumed uniform) are not equal, the FWHH is given by the second central moment of the IMS response and can only be known to within a multiplicative factor. The effectiveness of these two approaches is demonstrated using IMS data from the published literature.The additional peak broadening often observed in a linear IMS has several possible sources. One depends on the construction of the cell and the parallelism (or lack thereof) that might exist between the aperture grid and ion collector. Another depends on electric fields used to bias the cell. If the electric field in the aperture/collector region is less than in the shutter/aperture region, peak broadening occurs. Induction effects in the aperture/collector region not only shorten drift times, but also create diffusion-like broadening of the peak. Shortening the distance between the aperture grid and ion collector, or using a higher electric field in that region, minimizes induction effects. Drift time calibration requires adjustments for induction effects.  相似文献   

19.
Within the past decade, imaging mass spectrometry (IMS) has been increasingly recognized as an indispensable technique for studying biological systems. Its rapid evolution has resulted in an impressive array of instrument variations and sample applications, yet the tools and data are largely confined to specialists. It is therefore important that at this junction the IMS community begin to establish IMS as a permanent fixture in life science research thereby making the technology and/or the data approachable by non-mass spectrometrists, leading to further integration into biological and clinical research. In this perspective article, we provide insight into the evolution and current state of IMS and propose some of the directions that IMS could develop in order to stay on course to become one of the most promising new tools in life science research.  相似文献   

20.
Ross SK  McDonald G  Marchant S 《The Analyst》2008,133(5):602-607
Ion mobility spectrometry (IMS) is proven core technology for the gas-phase detection of chemical warfare (CW) agents. One disadvantage of IMS technology is that ions of similar mobility cannot readily be resolved, resulting in false alarm responses and a loss of user confidence. High field asymmetric waveform spectrometry (HiFAWS) is an emerging technology for the gas-phase detection of CW agents. Of particular interest is the potential of a HiFAWS-based platform to reduce the number of false alarms by resolving ions that cannot be discriminated using IMS. It has been demonstrated that a water clustering/declustering mechanism can be a dominant process in HiFAWS. Ions that cannot be discriminated in IMS because they possess the same low field mobility value can be resolved using HiFAWS due to differences in the extent of low field ion solvation and high field ion desolvation. When operating in complex environments such as those potentially experienced in military and security arenas, IMS systems commonly employ internal dopants to reduce the number of background responses. It is possible that HiFAWS systems may also require the use of internal dopants for the same reason. It has been demonstrated that dopants employed for use in IMS may not be suitable for use in HiFAWS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号