首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let s q denote the q-ary sum-of-digits function and let \({P_1(X), P_2(X) \in \mathbb{Z}[X]}\) with \({P_1(\mathbb{N}), P_2(\mathbb{N}) \subset \mathbb{N}}\) be polynomials of degree \({h, l \geqq 1, h \neq l}\) , respectively. In this note we show that ( \({s_q(P_1(n))/s_q(P_2(n)))_{n \geqq 1}}\) is dense in \({\mathbb{R}^+}\) . This extends work by Stolarsky [9] and Hare, Laishram and Stoll [6].  相似文献   

2.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

3.
Let L=?Δ+V is a Schrödinger operator on $\mathbb{R}^{d}$ , d≥3, V≥0. Let $H^{1}_{L}$ denote the Hardy space associated with L. We shall prove that there is an L-harmonic function w, 0<δw(x)≤C, such that the mapping $$H_L^1 \ni f\mapsto wf\in H^1\bigl(\mathbb{R}^d\bigr) $$ is an isomorphism from the Hardy space $H_{L}^{1}$ onto the classical Hardy space $H^{1}(\mathbb{R}^{d})$ if and only if $\Delta^{-1}V(x)=-c_{d}\int_{\mathbb{R}^{d}} |x-y|^{2-d} V(y) dy$ belongs to $L^{\infty}(\mathbb{R}^{d})$ .  相似文献   

4.
In this note, we prove the following generalization of a theorem of Shi and Tam (J Differ Geom 62:79–125, 2002): Let (Ω, g) be an n-dimensional (n ≥ 3) compact Riemannian manifold, spin when n?>?7, with non-negative scalar curvature and mean convex boundary. If every boundary component Σ i has positive scalar curvature and embeds isometrically as a mean convex star-shaped hypersurface ${{\hat \Sigma}_i \subset \mathbb{R}^n}$ , then $$ \int\limits_{\Sigma_i} H \ d \sigma \le \int\limits_{{\hat \Sigma}_i} \hat{H} \ d {\hat \sigma} $$ where H is the mean curvature of Σ i in (Ω, g), ${\hat{H}}$ is the Euclidean mean curvature of ${{\hat \Sigma}_i}$ in ${\mathbb{R}^n}$ , and where d σ and ${d {\hat \sigma}}$ denote the respective volume forms. Moreover, equality holds for some boundary component Σ i if, and only if, (Ω, g) is isometric to a domain in ${\mathbb{R}^n}$ . In the proof, we make use of a foliation of the exterior of the ${\hat \Sigma_i}$ ’s in ${\mathbb{R}^n}$ by the ${\frac{H}{R}}$ -flow studied by Gerhardt (J Differ Geom 32:299–314, 1990) and Urbas (Math Z 205(3):355–372, 1990). We also carefully establish the rigidity statement in low dimensions without the spin assumption that was used in Shi and Tam (J Differ Geom 62:79–125, 2002).  相似文献   

5.
Let $(U_{n}(t))_{t\in\mathbb{R}^{d}}$ be the empirical process associated to an ? d -valued stationary process (X i ) i≥0. In the present paper, we introduce very general conditions for weak convergence of $(U_{n}(t))_{t\in\mathbb{R}^{d}}$ , which only involve properties of processes (f(X i )) i≥0 for a restricted class of functions $f\in\mathcal{G}$ . Our results significantly improve those of Dehling et al. (Stoch. Proc. Appl. 119(10):3699–3718, 2009) and Dehling and Durieu (Stoch. Proc. Appl. 121(5):1076–1096, 2011) and provide new applications. The central interest in our approach is that it does not need the indicator functions which define the empirical process $(U_{n}(t))_{t\in\mathbb{R}^{d}}$ to belong to the class  $\mathcal{G}$ . This is particularly useful when dealing with data arising from dynamical systems or functionals of Markov chains. In the proofs we make use of a new application of a chaining argument and generalize ideas first introduced in Dehling et al. (Stoch. Proc. Appl. 119(10):3699–3718, 2009) and Dehling and Durieu (Stoch. Proc. Appl. 121(5):1076–1096, 2011). Finally we will show how our general conditions apply in the case of multiple mixing processes of polynomial decrease and causal functions of independent and identically distributed processes, which could not be treated by the preceding results in Dehling et al. (Stoch. Proc. Appl. 119(10):3699–3718, 2009) and Dehling and Durieu (Stoch. Proc. Appl. 121(5):1076–1096, 2011).  相似文献   

6.
The vector space \({\otimes^{n}\mathbb{C}^2}\) upon which the XXZ Hamiltonian with n spins acts bears the structure of a module over both the Temperley–Lieb algebra \({{\rm TL}_{n}(\beta = q + q^{-1})}\) and the quantum algebra \({{\rm U}_{q} \mathfrak{sl}_2}\) . The decomposition of \({\otimes^{n}\mathbb{C}^2}\) as a \({{\rm U}_{q} \mathfrak{sl}_2}\) -module was first described by Rosso (Commun Math Phys 117:581–593, 1988), Lusztig (Cont Math 82:58–77, 1989) and Pasquier and Saleur (Nucl Phys B 330:523–556, 1990) and that as a TL n -module by Martin (Int J Mod Phys A 7:645–673, 1992) (see also Read and Saleur Nucl Phys B 777(3):316–351, 2007; Gainutdinov and Vasseur Nucl Phys B 868:223–270, 2013). For q generic, i.e. not a root of unity, the TL n -module \({\otimes^{n}\mathbb{C}^2}\) is known to be a sum of irreducible modules. We construct the projectors (idempotents of the algebra of endomorphisms of \({\otimes^{n}\mathbb{C}^2}\) ) onto each of these irreducible modules as linear combinations of elements of \({{\rm U}_{q} \mathfrak{sl}_2}\) . When q = q c is a root of unity, the TL n -module \({\otimes^{n}\mathbb{C}^2}\) (with n large enough) can be written as a direct sum of indecomposable modules that are not all irreducible. We also give the idempotents projecting onto these indecomposable modules. Their expression now involves some new generators, whose action on \({\otimes^{n}\mathbb{C}^2}\) is that of the divided powers \({(S^{\pm})^{(r)} = \lim_{q \rightarrow q_{c}} (S^{\pm})^r/[r]!}\) .  相似文献   

7.
Let $\mathfrak{g}$ be a complex semisimple Lie algebra, $\mathfrak{b}$ a Borel subalgebra, and $\mathfrak{h}\subset\mathfrak{b}$ a Cartan subalgebra. Let V be a finite dimensional simple $U(\mathfrak{g})$ module. Based on a principal s-triple (e,h,f) and following work of Kostant, Brylinski (J Amer Math Soc 2(3):517–533, 1989) defined a filtration $\mathcal{F}_e$ for all weight subspaces V μ of V and calculated the dimensions of the graded subspaces for μ dominant. In Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) these dimensions were calculated for all μ. Let δM(0) be the finite dual of the Verma module of highest weight 0. It identifies with the global functions on a Weyl group translate of the open Bruhat cell and so inherits a natural degree filtration. On the other hand, up to an appropriate shift of weights, there is a unique $U(\mathfrak{b})$ module embedding of V into δM(0) and so the degree filtration induces a further filtration $\mathcal{F}$ on each weight subspace V μ . A casual reading of Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) might lead one to believe that $\mathcal{F}$ and $\mathcal{F}_e$ coincide. However this is quite false. Rather one should view $\mathcal{F}_e$ as coming from a left action of $U(\mathfrak{n})$ and then there is a second (Brylinski-Kostant) filtration $\mathcal{F}'_e$ coming from a right action. It is $\mathcal{F}'_e$ which may coincide with $\mathcal{F}$ . In this paper the above claim is made precise. First it is noted that $\mathcal{F}$ is itself not canonical, but depends on a choice of variables. Then it is shown that a particular choice can be made to ensure that $\mathcal{F}=\mathcal{F}'_e$ . An explicit form for the unique left $U(\mathfrak{b})$ module embedding $V\hookrightarrow\delta M(0)$ is given using the right action of $U(\mathfrak{n})$ . This is used to give a purely algebraic proof of Brylinski’s main result in Brylinski (J Amer Math Soc 2(3):517–533, 1989) which is much simpler than Joseph et al. (J Amer Math Soc 13(4):945–970, 2000). It is noted that the dimensions of the graded subspaces of $\rm{gr}_{\mathcal{F}_e} V_{\!\mu}$ and $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ can be very different. Their interrelation may involve the Kashiwara involution. Indeed a combinatorial formula for multiplicities in tensor products involving crystal bases and the Kashiwara involution is recovered. Though the dimensions for the graded subspaces of $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ are determined by polynomial degree, their values remain unknown.  相似文献   

8.
9.
Let a trace be a computably enumerable set of natural numbers such that ${V^{[m]} = \{n : \langle n, m\rangle \in V \}}$ V [ m ] = { n : 〈 n , m 〉 ∈ V } is finite for all m, where ${\langle^{.},^{.}\rangle}$ 〈 . , . 〉 denotes an appropriate pairing function. After looking at some basic properties of traces like that there is no uniform enumeration of all traces, we prove varied results on traceability and variants thereof, where a function ${f : \mathbb{N} \rightarrow \mathbb{N}}$ f : N → N is traceable via a trace V if for all ${m, \langle f(m), m\rangle \in V.}$ m , 〈 f ( m ) , m 〉 ∈ V . Then we turn to lattices $$\textit{\textbf{L}}_{tr}(V) = (\{W : V \subseteq W \, {\rm and} \, W \, {\rm a} \, {\rm trace}\}, \, \subseteq),$$ L t r ( V ) = ( { W : V ? W and W a trace } , ? ) , V a trace. Here, we study the close relationship to ${\mathcal{E} = (\{A : A \subseteq \mathbb{N} \quad c.e.\}, \subseteq)}$ E = ( { A : A ? N c . e . } , ? ) , automorphisms, isomorphisms, and isomorphic embeddings.  相似文献   

10.
We establish the global well-posedness of the Navier–Stokes- ${\bar \omega}$ model with initial data ${u_0 \in H^{1-s}(\mathbb{R}^3)}$ with ${0 < s < \frac{1}{2}}$ which improves the existence results in Fan and Zhou (Appl Math Lett 24:1915–1918, 2011), Layton et al. (Commun Pure Appl Anal 10:1763–1777, 2011) where the initial data are required belonging to ${H^2(\mathbb{R}^3)}$ . We also obtain the similar results for a family of Navier–Stokes-α-like and magnetohydrodynamic-α models.  相似文献   

11.
We study a class of quadratic p-ary functions ${{\mathcal{F}}_{p,n}}$ from ${\mathbb{F}_{p^n}}$ to ${\mathbb{F}_p, p \geq 2}$ , which are well-known to have plateaued Walsh spectrum; i.e., for each ${b \in \mathbb{F}_{p^n}}$ the Walsh transform ${\hat{f}(b)}$ satisfies ${|\hat{f}(b)|^2 \in \{ 0, p^{(n+s)}\}}$ for some integer 0 ≤ s ≤ n ? 1. For various types of integers n, we determine possible values of s, construct ${{\mathcal{F}}_{p,n}}$ with prescribed spectrum, and present enumeration results. Our work generalizes some of the earlier results, in characteristic two, of Khoo et. al. (Des Codes Cryptogr, 38, 279–295, 2006) and Charpin et al. (IEEE Trans Inf Theory 51, 4286–4298, 2005) on semi-bent functions, and of Fitzgerald (Finite Fields Appl 15, 69–81, 2009) on quadratic forms.  相似文献   

12.
Let R be a commutative Noetherian ring, and let n be a non-negative integer. In this article, by using the theory of Gorenstein dimensions, it is shown that whenever R is a homomorphic image of a Noetherian Gorenstein ring, then the invariants ${\inf\{i \in \mathbb{N}_0|\, \rm{dim\, Supp}(\mathfrak{b}^t H_{\mathfrak{a}}^i(M)) \geq n\, \rm{for\, all}\, t \in \mathbb{N}_0\}}$ and ${\inf\{\lambda_{\mathfrak{a} R_{\mathfrak{p}}}^{\mathfrak{b} R_{\mathfrak{p}}}(M_{\mathfrak{p}})|\, \mathfrak{p} \in {\rm Spec} \, R\, \rm{and\, dim}\, R/ \mathfrak{p} \geq n\}}$ are equal, for every finitely generated R-module M and for all ideals ${\mathfrak{a}, \mathfrak{b}}$ of R with ${\mathfrak{b}\subseteq \mathfrak{a}}$ . This generalizes Faltings’ Annihilator Theorem (see [6]).  相似文献   

13.
Let V be a convex subset of a normed space and let a nondecreasing function α : [0, ∞) → [0, ∞) be given. A function ${f : V \rightarrow \mathbb{R}}$ is called α-midconvex if $$f\left(\frac{x+y}{2} \right)\leq \frac{f(x)+f(y)}{2}+\alpha(\|x-y\|) \quad \,{\rm for}\, x,y\in V.$$ It is known (Tabor in Control Cybern., 38/3:656–669, 2009) that if ${f : V \rightarrow \mathbb{R}}$ is α-midconvex, locally bounded above at every point of V then $$f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)+P_\alpha(\|x-y\|) \quad \,{\rm for}\, x, y \in V,t \in [0,1],$$ where ${P_\alpha(r):=\sum_{k=0}^\infty \frac{1}{2^k} \alpha(2{\rm dist}(2^kr, \mathbb{Z}))}$ for ${r \in \mathbb{R}}$ . We show that under some additional assumptions the above estimation cannot be improved.  相似文献   

14.
Let G be a multiplicative subsemigroup of the general linear group Gl ${(\mathbb{R}^d)}$ which consists of matrices with positive entries such that every column and every row contains a strictly positive element. Given a G-valued random matrix A, we consider the following generalized multidimensional affine equation $$R\stackrel{\mathcal{D}}{=} \sum_{i=1}^N A_iR_i+B,$$ where N ≥ 2 is a fixed natural number, A 1, . . . , A N are independent copies of ${A, B \in \mathbb{R}^d}$ is a random vector with positive entries, and R 1, . . . , R N are independent copies of ${R \in \mathbb{R}^d}$ , which have also positive entries. Moreover, all of them are mutually independent and ${\stackrel{\mathcal{D}}{=}}$ stands for the equality in distribution. We will show with the aid of spectral theory developed by Guivarc’h and Le Page (Simplicité de spectres de Lyapounov et propriété d’isolation spectrale pour une famille d’opérateurs de transfert sur l’espace projectif. Random Walks and Geometry, Walter de Gruyter GmbH & Co. KG, Berlin, 2004; On matricial renewal theorems and tails of stationary measures for affine stochastic recursions, Preprint, 2011) and Kesten’s renewal theorem (Kesten in Ann Probab 2:355–386, 1974), that under appropriate conditions, there exists χ >  0 such that ${{\mathbb{P}(\{\langle R, u \rangle > t\})\asymp t^{-\chi}}}$ , as t → ∞, for every unit vector ${u \in \mathbb{S}^{d-1}}$ with positive entries.  相似文献   

15.
The m-accretivity and m-sectoriality of the minimal and maximal realizations of second-order elliptic operators of the form ${Au=-{\rm div}(a \nabla u)+F\cdot \nabla u +Vu}$ in ${L^p(\mathbb{R}^N)}$ are shown, where the coefficients a, F and V are unbounded. The result may be regarded as an endpoint assertion of the previous result in Sobajima (J Evol Equ 12:957–971, 2012) and an improvement of that in Metafune et al. (Forum Math 22:583–601, 2010). Moreover, an L p -generalization of Kato’s self-adjoint problem in Kato (1981, Appendix 2) is discussed. The proof is based on Sobajima (J Evol Equ 12:957–971, 2012). As examples, the operators ${-\Delta \pm |x|^{\beta-1}x \cdot \nabla +c|x|^{\gamma}}$ are also dealt with, which are mentioned in Metafune et al. (Forum Math 22:583–601, 2010).  相似文献   

16.
A. Jabbari 《Semigroup Forum》2012,85(1):160-168
In Jabbari and Namioka (Milan J. Math. 78:503?C522, 2010), the authors characterized the spectrum M(W) of the Weyl algebra W, i.e. the norm closure of the algebra generated by the family of functions $\{n\mapsto x^{n^{k}}; x\in\mathbb{T}, k\in\mathbb{N}\}$ , ( $\mathbb{T}$ the unit circle), with a closed subgroup of $E(\mathbb{T})^{\mathbb{N}}$ where $E(\mathbb{T})$ denotes the family of the endomorphisms of the multiplicative group $\mathbb{T}$ . But the size of M(W) in $E(\mathbb{T})^{\mathbb{N}}$ as well as the induced group operation were left as a problem. In this paper, we will give a solution to this problem.  相似文献   

17.
The aim of the paper is to describe one-parameter groups of formal power series, that is to find a general form of all homomorphisms \({\Theta_G : G \to \Gamma}\) , \({\Theta_G(t) = \sum_{k=1}^{\infty} c_k(t)X^k}\) , \({c_1 : G \to \mathbb{K} \setminus\{0\}}\) , \({c_k : G \to \mathbb{K}}\) for k ≥ 2, from a commutative group (G, + ) into the group \({(\Gamma, \circ)}\) of invertible formal power series with coefficients in \({\mathbb{K} \in \{\mathbb{R},\mathbb{C}\}}\) . Considering one-parameter groups of formal power series and one-parameter groups of truncated formal power series, we give explicit formulas for the coefficient functions c k with more details in the case where either c 1 = 1 or c 1 takes infinitely many values. Here we give the results much more simply than they were presented in Jab?oński and Reich (Abh. Math. Sem. Univ. Hamburg 75:179–201, 2005; Result Math 47:61–68, 2005; Publ Math Debrecen 73(1–2):25–47, 2008). Also the case im c 1 = E m (here E m stands for the group of all complex roots of order m of 1), not considered in Jab?oński and Reich (Abh. Math. Sem. Univ. Hamburg 75:179–201, 2005; Result Math 47:61–68, 2005; Publ Math Debrecen 73(1–2):25–47, 2008), will be discussed.  相似文献   

18.
Every multiplier algebra of an irreducible complete Pick kernel arises as the restriction algebra ${\mathcal{M}_V = \{f \big|_V : f \in \mathcal{M}_d\}}$ , where d is some integer or ${\infty, \mathcal{M}_d}$ is the multiplier algebra of the Drury-Arveson space ${H^2_d}$ , and V is a subvariety of the unit ball. For finite dimensional d it is known that, under mild assumptions, every isomorphism between two such algebras ${\mathcal{M}_V}$ and ${\mathcal{M}_W}$ is induced by a biholomorphism between W and V. In this paper we consider the converse, and obtain positive results in two directions. The first deals with the case where V is the proper image of a finite Riemann surface. The second deals with the case where V is a disjoint union of varieties.  相似文献   

19.
By a $\mathfrak{B}$ -regular variety, we mean a smooth projective variety over $\mathbb{C}$ admitting an algebraic action of the upper triangular Borel subgroup $\mathfrak{B} \subset {\text{SL}}_{2} {\left( \mathbb{C} \right)}$ such that the unipotent radical in $\mathfrak{B}$ has a unique fixed point. A result of Brion and the first author [4] describes the equivariant cohomology algebra (over $\mathbb{C}$ ) of a $\mathfrak{B}$ -regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^{1}$ . The main result of this paper uses this fact to classify the $\mathfrak{B}$ -invariant subvarieties Y of a $\mathfrak{B}$ -regular variety X for which the restriction map i Y : H *(X) → H *(Y) is surjective.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号