首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a research project with one-day teacher education workshops for secondary-school mathematics teachers, our study explores the potential of tool-supported discussions in helping them to notice important and critical aspects of mathematics teaching talk. Mathematical practices of naming and explaining in teaching talk, students’ content learning challenges, and noticing processes of identifying, interpreting and deciding are the components of our framework and the tools that guided the design and implementation of three workshops on linear equations, fractions and plane isometries. The data was collected during the discussions with the seven teachers and the teacher educator throughout these workshops. The coding of the discussions allowed us to see discourse moves that reveal the teachers’ noticing of: (i) challenges in the identification of mathematical naming, (ii) mathematical explaining that voices the students’ learning, (iii) classroom practice in relation to mathematical naming and explaining.  相似文献   

2.
Mathematical writing recently has been defined as writing to reason and communicate mathematically. But mathematics instructional resources lack guidance for teachers as to how to implement such writing. The purpose of this paper is to describe how methods of design-based research were used to develop an instructional resource when one does not currently exist. Thirty-four participants—including teachers, mathematics coaches, mathematics curriculum developers, literacy coaches, a mathematician, and academics in elementary mathematics education, mathematics education, writing education, and science education—participated in a multi-step process to recommend, revise, and confirm instructional guidelines for elementary mathematical writing. The development process began with thirty-two recommendations from science writing and language arts writing. Through multiple cycles of feedback, five instructional guidelines and related considerations and techniques for implementation of elementary mathematical writing emerged.  相似文献   

3.
Research is described concerning the effectiveness of inquiry-based laboratory environments created in US mathematics/science education programme courses. Laboratory projects were conducted using a framework that allowed pre-service teachers to explore, analyse, and communicate ‘investigable’ realms of physical phenomena. Goals were for pre-service teachers to experience the value of learning in an inquiry-enhanced environment and to engage in contextualized mathematics so they would utilize this instruction in their future classrooms. It is proposed that inquiry-based laboratories are needed within the mathematics classroom in order to allow students the opportunity to contextualize, to connect to other disciplines, and to experience mathematical concepts. Pre-service teachers were expected to pursue conjectures, collect data, think critically, and communicate findings. This qualitative research shows how the use of inquiry can complement the learning of mathematical content and educational strategies for pre-service teachers. Results provide detailed information for teacher educators regarding instructional design of contextualized mathematical inquiry.  相似文献   

4.
This study investigated how Turkish mathematics teachers evaluate the effectiveness of classroom teaching in terms of improving students’ mathematical proficiency. To this purpose, teachers were asked to evaluate a mathematics lesson as presented them in a vignette. By means of cluster analysis, the participants’ evaluations of the lesson were described in five thematic dimensions, which could be further assembled into two overriding categories: students’ understanding of the subject, and teachers’ classroom practices. The overall aim of the current paper is to propose a preliminary model of the framework that Turkish mathematics teachers use to evaluate a mathematics lesson.  相似文献   

5.
A study with prospective teachers without prior mathematical modeling experience sheds light on how their newly developed conceptual understanding of modeling manifested itself in their work on the final task of a modeling module within a pedagogy course in secondary mathematics curriculum and assessment. The main purpose of the module was to provide opportunity for the prospective teachers to experience the Common Core Mathematical Practice Model with Mathematics and begin to develop competency in modeling. Their work and reflections displayed a range of proficiency in several competencies associated with the modeling process. Examples of their work illustrating these ranges are provided. The prospective teachers expressed both struggle and rewards during the process, and reflected on challenges for teaching modeling. The results suggest that infusing modules in existing courses can be an effective way to elevate prospective teachers from unfamiliarity with modeling to noticeable levels of proficiency in various modeling sub-competencies.  相似文献   

6.
7.
Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers’ developing conceptions about (a) the nature of mathematical modeling in simulations of “real life” problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike other studies that have focused on single-topic and lesson-sized research sites, a course-sized research site was used in this study. Having been through several iterations over three teaching semesters, the 15-week long course was implemented with 25 pre-service secondary mathematics teachers. Findings revealed that pre-service teachers developed ideas about the nature of mathematical modeling involving what mathematical modeling is, the relationship between mathematical modeling and meaningful understanding, and the nature of mathematical modeling tasks. They also realized the changing roles of teachers during modeling implementations and diversity in students’ ways of thinking. The researchers’ conceptual development, on the other hand, involved realizing the critical aspect of the “teacher role” played by the instructor during modeling implementations, and the need for more experience of modeling implementations for pre-service teachers.  相似文献   

8.
As part of recent scrutiny of teacher capacity, the question of teachers’ content knowledge of higher level mathematics emerges as important to the field of mathematics education. Elementary teachers in North America and some other countries tend to be subject generalists, yet it appears that some higher level mathematics background may be appropriate for teachers. An initial examination of a small sample of textbooks for teachers suggested the existence of a wide array of treatments and depth and quality of mathematics coverage. Based on the literature, a new framework was created to assess the mathematical quality of treatments for both specialized knowledge and horizon knowledge in mathematics textbooks for teachers. The framework was tested on a sample topic of the circle area formula derivation, chosen because it draws heavily on both specialized and horizon knowledge. The framework may contribute to similar analyses of other topics in a broader range of resources, in the overall quest to better describe the details of what constitutes appropriate mathematics horizon knowledge for teachers.  相似文献   

9.
Most science departments offer compulsory mathematics courses to their students with the expectation that students can apply their experience from the mathematics courses to other fields of study, including science. The current study first aims to investigate the views of pre-service science teachers of science-teaching preparation degrees and their expectations regarding the difficulty level of mathematics courses in science-teaching education programmes. Second, the study investigates changes and the reasons behind the changes in their interest regarding mathematics after completing these courses. Third, the current study seeks to reveal undergraduate science teachers’ opinions regarding the contribution of undergraduate mathematics courses to their professional development. Being qualitative in nature, this study was a case study. According to the results, almost all of the students considered that undergraduate mathematics courses were ‘difficult’ because of the complex and intensive content of the courses and their poor background mathematical knowledge. Moreover, the majority of science undergraduates mentioned that mathematics would contribute to their professional development as a science teacher. On the other hand, they declared a negative change in their attitude towards mathematics after completing the mathematics courses due to continuous failure at mathematics and their teachers’ lack of knowledge in terms of teaching mathematics.  相似文献   

10.
The findings reported in this paper were generated from a case study of teacher leaders at a state‐level mathematics conference. Investigation focused on how participants viewed the mathematical processes of communication, connections, representations, problem solving, and reasoning and proof. Purposeful sampling was employed to select nine participants who were then interviewed and observed as they presented a session at the conference. Participants' statements revealed differences in their views of mathematical processes. The analysis led to an emergent framework for views of mathematical processes that includes three levels: participatory, experiential, and sense‐making. Implications are shared for mathematics methods instructors, professional learning, and research. Discussion also relates the framework to the Standards for Mathematical Practice.  相似文献   

11.
This paper addresses a topic within university mathematics education which has been somewhat underexplored: the teaching practices actually used by university mathematics teachers when giving lectures. The study investigates the teaching practices of seven Swedish university teachers on the topic of functions using a discursive approach, the commognitive framework of Sfard. In the paper a categorization of the construction and substantiation routines used by the teachers is presented, for instance various routines for constructing definitions and examples, and for verifying whether an example satisfies a given definition. The findings show that although the overall form of the lectures is similar, with teachers using ‘chalk talk’, and overt student participation limited to asking and answering questions, there are in fact significant differences in the way the teachers present and do mathematics in their lectures. These differences present themselves both on the level of discursive routines and on a more general level in how the process of doing mathematics is made visible in the teachers’ teaching practices. Moreover, I believe that many of the results of the study could be relevant for investigating the teaching of other mathematical topics.  相似文献   

12.
This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers’ conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets – designed and used in an exploratory manner – promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.  相似文献   

13.
The issues involved in teaching English language learners mathematics while they are learning English pose many challenges for mathematics teachers and highlight the need to focus on language-processing issues related to teaching mathematical content. Two realistic-type problems from high-stakes tests are used to illustrate the complex interactions between culture, language, and mathematical learning. The analyses focus on aspects of the problems that potentially increase cognitive demands for second-language learners. An analytical framework is presented that is designed to enable mathematics teachers to identify critical elements in problems and the learning environment that contribute to increased cognitive demands for students of English as a second language. The framework is proposed as a cycle of teacher reflection that would extend a constructivist model of teaching to include broader linguistic, cultural, and cognitive processing issues of mathematics teaching, as well as enable teachers to develop more accurate mental models of student learning.  相似文献   

14.
We explore the conjecture that engaging teachers with activities which feature mathematical practices from the past (history-focused tasks) and in today’s mathematics classrooms (mathtasks) can promote teachers’ problematizing of mathematics and its pedagogy. Here, we sample evidence of discursive shifts observed as twelve mathematics teachers engage with a set of problematizing activities (PA) – three rounds of history-focused and mathtask combinations – during a four–month postgraduate course. We trace how the commognitive conflicts orchestrated in the PA triggered changes in the teachers’ narratives about: mathematical objects (such as what a function is); how mathematical objects come to be (such as what led to the emergence of the function object); and, pedagogy (such as what value may lie in listening to students or in trialing innovative assessment practices). Our study explores a hitherto under-researched capacity of the commognitive framework to steer the design, evidence identification and impact evaluation of pedagogical interventions.  相似文献   

15.
The issues involved in teaching English language learners mathematics while they are learning English pose many challenges for mathematics teachers and highlight the need to focus on language-processing issues related to teaching mathematical content. Two realistic-type problems from high-stakes tests are used to illustrate the complex interactions between culture, language, and mathematical learning. The analyses focus on aspects of the problems that potentially increase cognitive demands for second-language learners. An analytical framework is presented that is designed to enable mathematics teachers to identify critical elements in problems and the learning environment that contribute to increased cognitive demands for students of English as a second language. The framework is proposed as a cycle of teacher reflection that would extend a constructivist model of teaching to include broader linguistic, cultural, and cognitive processing issues of mathematics teaching, as well as enable teachers to develop more accurate mental models of student learning.  相似文献   

16.
The teaching and learning of Primary school mathematics in Malta involves the use of code-switching between the local language Maltese, and English Mathematical terms themselves are usually retained in English and teachers may use various strategies to share the meaning of these words with their pupils. One strategy that may be used in a bilingual situation is translation from one language to another. In this paper I explore how a teacher used this strategy to teach her 7 to 8-year-old pupils mathematical vocabulary related to the topic'Money and Shopping'. While Maltese equivalents for these words exist, it is the English versions that form part of the school mathematics register. I develop a semiotic model where a mathematical word is considered to be a sign, and the process of translation is viewed as a chain of signification from one language to another.  相似文献   

17.
Mathematics educators and legislators worldwide have begun placing a greater emphasis on teaching mathematics for understanding and through the use of real-life applications. Revised curricula have led to the time allocated to mathematics in effected countries being scrutinised. This has resulted in policy-makers and educationalists worldwide calling for the inclusion of double class periods on the mathematics timetable. Research from the United States suggests that the introduction of double or block periods allow for the objectives of revised curricula to be realized. The aim of this study, which is set in the school context, is first to ascertain if schools in Ireland are scheduling double periods for mathematics at both lower post-primary level (Junior Cycle) and upper post-primary level (Senior Cycle). It also seeks to determine if there is a link between teachers’ levels of satisfaction with the time allocated to mathematics and the provision of double periods and to get insights from teachers in relation to their opinions on what can be achieved through the introduction of such classes. Questionnaires were sent to 400 post-primary schools (approximately 1600 teachers) which were selected using stratified sampling techniques. It was found that 8.7% of mathematics teachers reported the provision of double periods at Junior Cycle while 55% reported that double periods were included on their timetable at Senior Cycle. The study also identified a link between teachers’ levels of satisfaction with the time allocated to mathematics and the provision of double periods. Finally, teachers felt that double periods allowed for new teaching methodologies, which were promoted by the revised curricula, to be implemented and teaching for understanding was also more feasible. In essence, it was found that double periods have an influence on the mathematical experience of post-primary students as well as the teaching approaches employed.  相似文献   

18.
To make progress toward ambitious and equitable goals for students’ mathematical development, teachers need opportunities to develop specialized ways of knowing mathematics such as mathematical knowledge for teaching (MKT) for their work with students in the classroom. Professional learning communities (PLCs) are a common model used to support focused teacher collaboration and, in turn, foster teacher development, instructional improvement, and student outcomes. However, there is a lack of specificity in what is known about teachers’ work in PLCs and what teachers can gain from those experiences, despite broad claims of their benefit. We discuss an investigation of the work of secondary mathematics teachers in PLCs at two high schools to describe and explicate possible opportunities for teachers to develop the mathematical knowledge needed for the work of teaching and the ways in which these opportunities may be pursued or hindered. The findings show that, without pointed focus on mathematical content, opportunities to develop MKT can be rare, even among mathematics teachers. Two detailed images of teacher discussion are shared to highlight these claims. This article contributes to the ongoing discussion about the affordances and limitations of PLCs for mathematics teachers, considerations for their use, and how they can be supported.  相似文献   

19.
This paper draws on data from the international TEDS-M study, organized by the IEA, and utilizes a conceptual framework describing the Taiwanese perspective of mathematics and mathematics teaching competences (MTCs) with regard to investigating the uniqueness and patterns of Taiwanese future primary teacher performance in the international context. The framework includes content-oriented and thought-oriented categories of mathematics competence. The latter category contains subcategories adopted and revised from (3rd Mediterranean conference on mathematical education. Hellenic Mathematical Society, Athens, 2003) the competence approach by Niss. Hsieh’s (Research on the development of the professional ability for teaching mathematics in the secondary school level (3/3). Taiwan: National Science Council, 2009) model is also adopted and revised to serve as an analytical framework, including four categories relating to MTCs, representations, language, and misconceptions or error procedures. This paper shows that in thought-oriented mathematics competences Taiwan and Singapore share a unique pattern of higher percent correct in competences related to formalization, abstraction, and operations in mathematics than in those related to the way of thinking, modelling and reasoning in and with mathematics. The paper also addresses weak teaching competences claimed in domestic studies, which conflict with the TEDS-M results. Namely, in contrary to the international trend, Taiwanese future primary teachers are weak at judging mathematics competences required by students to learn mathematical concepts or solve problems, and superior at diagnosing and dealing with student misconceptions and error procedures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号