首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the singularly perturbed system $\dot x$ =εf(x,y,ε,λ), $\dot y$ =g(x,y,ε,λ). We assume that for small (ε,λ), (0,0) is a hyperbolic equilibrium on the normally hyperbolic centre manifold y=0 and that y 0(t) is a homoclinic solution of $\dot y$ =g(0,y,0,0). Under an additional condition, we show that there is a curve in the (ε,λ) parameter space on which the perturbed system has a homoclinic orbit also. We investigate the transversality properties of this orbit and use our results to give examples of 4 dimensional systems with Sil'nikov saddle-focus homoclinic orbits.  相似文献   

2.
This paper investigates the least time τ* of the first zero of the bounded solution to an initial boundary value problem for the heat equation. The heat equation is considered in the domain $$\left\{ {(x,t)| - \infty< x< s(t),0< t \leqslant T} \right\}$$ . The initial conditionu(x, 0)=φ(x) and the boundary conditionu x (s(t),t)=?R are specified. Let τ=τ(φ,R, s) denote the first zero ofu onx=s(t), that is,u(s(τ), τ)=0. Let τ*=min τ, where the minimum is taken over a class of functionss=s(t). The existence of τ* is demonstrated, and a generalization of the problem is discussed.  相似文献   

3.
We find conditions for the unique solvability of the problem u xy (x, y) = f(x, y, u(x, y), (D 0 r u)(x, y)), u(x, 0) = u(0, y) = 0, x ∈ [0, a], y ∈ [0, b], where (D 0 r u)(x, y) is the mixed Riemann-Liouville derivative of order r = (r 1, r 2), 0 < r 1, r 2 < 1, in the class of functions that have the continuous derivatives u xy (x, y) and (D 0 r u)(x, y). We propose a numerical method for solving this problem and prove the convergence of the method. __________ Translated from Neliniini Kolyvannya, Vol. 8, No. 4, pp. 456–467, October–December, 2005.  相似文献   

4.
Deductive similarity analysis is employed to study one-dimensional wave propagation in rate dependent materials whose constitutive laws are special cases of Maxwellian materials (σt = φ(ε, σ)εt + ψ(ε, σ), ε = strain, σ = stress). The general problem is shown not to have a similar solution although many special cases have the independent similar variable (x ? c)/(t ? d)e. These cases are studied and tabulated. Analytic similar solutions are presented for several cases and a discussion of permissable boundary conditions is given.  相似文献   

5.
6.
The authors consider the problem of finding u=u(x, t) and p=p(t) which satisfy u = Lu + p(t) + F(x, t, u, x, p(t)) in Q T=Ω×(0, T], u(x, 0)=ø(x), x∈Ω, u(x, t)=g(x, t) on ?Ω×(0, T] and either ∫G(t) Φ(x,t)u(x,t)dx = E(t), 0 ? t ? T or u(x0, t)=E(t), 0≤tT, where Ω?R n is a bounded domain with smooth boundary ?Ω, x 0∈Ω, L is a linear elliptic operator, G(t)?Ω, and F, ø, g, and E are known functions. For each of the two problems stated above, we demonstrate the existence, unicity and continuous dependence upon the data. Some considerations on the numerical solution for these two inverse problems are presented with examples.  相似文献   

7.
We study the vector boundary value problem with boundary perturbations: ε~2y~((4))=f(x,y,y″,ε, μ) ( μ<χ<1-μ) y(χ,ε,μ)l_(χ-μ)= A_1(ε,μ), y(χ,ε,μ)l_(χ-1-μ)=B_1(ε,μ) y″(χ,ε,μ)l_(χ-μ)=A_2(ε,μ),y″(χ,ε,μ)l_(χ-1-μ)=B_2(ε,μ)where yf, A_j and B_j (j=1,2) are n-dimensional vector functions and ε,μ are two small positive parameters. This vector boundary value problem does not appear to have been studied, although the scalar boundary value problem has been treated. Under appropriate assumptions, using the method of differential inequalities we find a solution of the vector boundary value problem and obtain the uniformly valid asymptotic expansions.  相似文献   

8.
The y-nonlocal Davey–Stewartson II equation is an extension of the usual DS II equation involving a partially parity-time-symmetric potential only with respect to the spatial variable y. By using the Hirota bilinear method, families of n-order rational solutions are obtained, which include lumps in the (xy)-plane and the (yt)-plane, growing-and-decaying line waves in the (xt)-plane, and hybrid solutions of interacting line rogue waves and lumps in the (xy)-plane.  相似文献   

9.
We establish new properties of solutions of the functional differential equation x′(t) = ax(t) + bx(t − r) + cx′(t − r) + px(qt) + hx′(qt) + f 1(x(t), x(t − r), x′(t − r), x(qt), x′(qt)) in the neighborhood of the singular point t = +∞. __________ Translated from Neliniini Kolyvannya, Vol. 10, No. 1, pp. 144–160, January–March, 2007.  相似文献   

10.
We establish the existence of Lipschitz stable invariant manifolds for semiflows generated by a delay equation x′ = L(t)x t + f (t, x t , λ), assuming that the linear equation x′ = L(t)x t admits a polynomial dichotomy and that f is a sufficiently small Lipschitz perturbation. Moreover, we show that the stable invariant manifolds are Lipschitz in the parameter λ. We also consider the general case of nonuniform polynomial dichotomies.  相似文献   

11.
Assuming a background flow of velocity U = U(x) in the axial direction x of a circular cylinder with surface temperature distribution T w T w (x) in a saturated porous medium, for the temperature boundary layer occurring on the cylinder three exactly solvable cases are identified. The functions {U(x), T w (x)} associated with these cases are given explicitly, and the corresponding exact solutions are expressed in terms of the modified Bessel function K 0 (z), the incomplete Gamma function Γ (a, z) and the confluent hypergeometric function U(a, b, z), respectively. The correlation between the Nusselt number and the Péclet number as well as the curvature effects on the heat transfer are discussed in all these cases in detail. Some “universal” features of the exponential surface temperature distribution are also pointed out.  相似文献   

12.
We prove the asymptotic stability of two-state nonplanar Riemann solutions for a class of multidimensional hyperbolic systems of conservation laws when the initial data are perturbed and viscosity is added. The class considered here is those systems whose flux functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. In particular, we obtain the uniqueness of the self-similar L entropy solution of the two-state nonplanar Riemann problem. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in Lloc1 of the space of directions ξ = x/t. That is, the solution u(t, x) of the perturbed problem satisfies u(t, tξ)→R(ξ) as t→∞, in Lloc1(ℝn), where R(ξ) is the self-similar entropy solution of the corresponding two-state nonplanar Riemann problem.  相似文献   

13.
This paper develops, with an eye on the numerical applications, an analogue of the classical Euler-Cauchy polygon method (which is used in the solution of the ordinary differential equation dy/dx=f(x, y), y(x 0)=y 0) for the solution of the following characteristic boundary value problem for a hyperbolic partial differential equation u xy =f(x, y, u, u x , y y ), u(x, y 0)=(x), u(x 0, y)=(y), where (x 0)=(y 0). The method presented here, which may be roughly described as a process of bilinear interpolation, has the advantage over previously proposed methods that only the tabulated values of the given functions (x) and (y) are required for its numerical application. Particular attention is devoted to the proof that a certain sequence of approximating functions, constructed in a specified way, actually converges to a solution of the boundary value problem under consideration. Known existence theorems are thus proved by a process which can actually be employed in numerical computation.
  相似文献   

14.
We consider the asymptotic behavior of solutions of systems of inviscid or viscous conservation laws in one or several space variables, which are almost periodic in the space variables in a generalized sense introduced by Stepanoff and Wiener, which extends the original one of H. Bohr. We prove that if u(x,t) is such a solution whose inclusion intervals at time t, with respect to ?>0, satisfy l epsiv;(t)/t→0 as t→∞, and such that the scaling sequence u T (x,t)=u(T x,T t) is pre-compact as t→∞ in L loc 1(? d +1 +, then u(x,t) decays to its mean value \(\), which is independent of t, as t→∞. The decay considered here is in L 1 loc of the variable ξ≡x/t, which implies, as we show, that \(\) as t→∞, where M x denotes taking the mean value with respect to x. In many cases we show that, if the initial data are almost periodic in the generalized sense, then so also are the solutions. We also show, in these cases, how to reduce the condition on the growth of the inclusion intervals l ?(t) with t, as t→∞, for fixed ? > 0, to a condition on the growth of l ?(0) with ?, as ?→ 0, which amounts to imposing restrictions only on the initial data. We show with a simple example the existence of almost periodic (non-periodic) functions whose inclusion intervals satisfy any prescribed growth condition as ?→ 0. The applications given here include inviscid and viscous scalar conservation laws in several space variables, some inviscid systems in chromatography and isentropic gas dynamics, as well as many viscous 2 × 2 systems such as those of nonlinear elasticity and Eulerian isentropic gas dynamics, with artificial viscosity, among others. In the case of the inviscid scalar equations and chromatography systems, the class of initial data for which decay results are proved includes, in particular, the L generalized limit periodic functions. Our procedures can be easily adapted to provide similar results for semilinear and kinetic relaxations of systems of conservation laws.  相似文献   

15.
Building on the results of Ma et al. (in Arch. Rational Mech. Anal. 177(2), 151–183 (2005)), and of the author Loeper (in Acta Math., to appear), we study two problems of optimal transportation on the sphere: the first corresponds to the cost function d 2(x, y), where d(·, ·) is the Riemannian distance of the round sphere; the second corresponds to the cost function ?log |x ? y|, known as the reflector antenna problem. We show that in both cases, the cost-sectional curvature is uniformly positive, and establish the geometrical properties so that the results of Loeper (in Acta Math., to appear) and Ma et al. (in Arch. Rational Mech. Anal. 177(2), 151–183 (2005)) can apply: global smooth solutions exist for arbitrary smooth positive data and optimal maps are Hölder continuous under weak assumptions on the data.  相似文献   

16.
Our aim is to establish some sufficient conditions for the oscillation of the second-order quasilinear neutral functional dynamic equation
( p(t)( [ y(t) + r(t)y( t(t) ) ]D )g )D + f( t,y( d(t) ) = 0,    t ? [ t0,¥ )\mathbbT, {\left( {p(t){{\left( {{{\left[ {y(t) + r(t)y\left( {\tau (t)} \right)} \right]}^\Delta }} \right)}^\gamma }} \right)^\Delta } + f\left( {t,y\left( {\delta (t)} \right)} \right. = 0,\quad t \in {\left[ {{t_0},\infty } \right)_\mathbb{T}},  相似文献   

17.
The use of the stretched-exponential function to represent both the relaxation function g(t)=(G(t)-G )/(G 0-G ) and the retardation function r(t) = (J +t/η-J(t))/(J -J 0) of linear viscoelasticity for a given material is investigated. That is, if g(t) is given by exp (?(t/τ)β), can r(t) be represented as exp (?(t/λ)µ) for a linear viscoelastic fluid or solid? Here J(t) is the creep compliance, G(t) is the shear modulus, η is the viscosity (η?1 is finite for a fluid and zero for a solid), G is the equilibrium modulus G e for a solid or zero for a fluid, J is 1/G e for a solid or the steady-state recoverable compliance for a fluid, G 0= 1/J 0 is the instantaneous modulus, and t is the time. It is concluded that g(t) and r(t) cannot both exactly by stretched-exponential functions for a given material. Nevertheless, it is found that both g(t) and r(t) can be approximately represented by stretched-exponential functions for the special case of a fluid with exponents β=µ in the range 0.5 to 0.6, with the correspondence being very close with β=µ=0.5 and λ=2τ. Otherwise, the functions g(t) and r(t) differ, with the deviation being marked for solids. The possible application of a stretched-exponential to represent r(t) for a critical gel is discussed.  相似文献   

18.
In this paper, we consider the Hamiltonian evolution of N weakly interacting bosons. Assuming triple collisions, its mean field approximation is given by a quintic Hartree equation. We construct a second order correction to the mean field approximation using a kernel k(t, x, y) and derive an evolution equation for k. We show global existence for the resulting evolution equation for the correction and establish an a priori estimate comparing the approximation to the exact Hamiltonian evolution. Our error estimate is global and uniform in time. Comparing with the work of Rodnianski and Schlein (Commun Math Phys 291:31–61, 2009), and Grillakis, Machedon and Margetis (Commun Math Phys 294:273–301, 2010; Adv Math 288:1788–1815, 2011), where the error estimate grows in time, our approximation tracks the exact dynamics for all time with an error of the order \({O(1/\sqrt{N}).}\)  相似文献   

19.
An asymptotic expansion for large λ of functions I(λ) defined by definite integrals of the form $$I(\lambda ) = \mathop \smallint \limits_0^\infty h(\lambda t)f(t)dt$$ is obtained in the case where h(t)=O(exp(-βt p )) as t→∞ with β, ?>0. To obtain the expansion for such integral transforms, I(λ) is first represented as a contour integral involving M [h; z], the Mellin transform of the kernel h(t) evaluated at z, and M[f; 1-z], the Mellin transform of the function f(t) evaluated at 1-z. By assuming a rather general asymptotic expansion for f(t) near t=0, it is shown that M[f; 1-z] can be continued into the right-half plane as a meromorphic function with poles that can be located and classified. The desired asymptotic expansion of I is then obtained by systematically moving the contour in its integral representation to the right. Each term in the expansion arises as a residue contribution corresponding to a pole of M[f; 1-z]. It is then shown how the expansion, originally found for large positive λ, can be extended to complex λ. Finally several examples are considered which illustrate the scope of our expansion theorems.  相似文献   

20.
In this paper we extend the guiding function approach to show that there are periodic or bounded solutions for first order systems of ordinary differential equations of the form x′=f(t,x), a.e. t∈[a,b], where f satisfies the Carathéodory conditions. Our results generalize recent ones of Mawhin and Ward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号