首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
K3[DyIII(nta)2(H2O)]·5H2O and (NH4)3[DyIII(nta)2] have been synthesized in aqueous solution and characterized by IR, elemental analysis and single-crystal X-ray diffraction techniques. In K3[DyIII(nta)2(H2O)]·5H2O the DyIII ion is nine coordinated yielding a tricapped trigonal prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 15.373(5) Å, b = 12.896(4) Å, c = 26.202(9) Å; β = 96.122(5)°, V = 5165(3) Å3, Z = 8, D c = 1.965 g·cm?3, μ = 3.458 mm?1, F(000) = 3016, R 1 = 0.0452 and wR 2 = 0.1025 for 4550 observed reflections with I ≥ 2σ(I). In (NH4)3[DyIII(nta)2] the DyIII ion is eight coordinated yielding a usual dicapped trigonal anti-prismatic conformation, and its crystal belongs to monoclinic system and C2/c space group. The crystal data are as follows: a = 13.736(3) Å, b = 7.9389(16) Å, c = 18.781(4) Å; β = 104.099(3)°, V = 1986.3(7) Å3, Z = 2, D c = 1.983 g·cm?3, μ = 3.834 mm?1, F(000) = 1172, R 1 = 0.0208 and wR 2 = 0.0500 for 2022 observed reflections with I ≥ 2σ(I). The results indicate that the difference in counter ion also influences coordination numbers and structures of rare earth metal complexes with aminopolycarboxylic acid ligands.  相似文献   

2.
The title complexes, Na[ErIII(Cydta)(H2O)2] · 5H2O (I) and Na2[SmIII(Cydta)][SmIII(Cydta)(H2O)3] · 11H2O (II) (Cydta is trans-1,2-cyclohexanediaminetetraacetic acid), are prepared and characterized using IR, elemental analyses, and single-crystal X-ray diffraction techniques. Crystal I belongs to triclinic system (space group P1), which has a mononuclear eight-coordinate slightly distorted square antiprismatic conformation. The crystal data are as follows: a = 8.371(12) Å, b = 9.952(14) Å, c = 14.74(2) Å, α = 88.32(2)°, β = 76.30(2)°, γ = 87.87(2)°, V = 1192(3) Å3, Z = 1, ρ = 1.835 g/cm3, μ = 3.612 mm?1, F(000) = 658, R = 0.0194, and wR = 0.0520 for 4130 observed reflections with I≥2σ(I). Crystal II belongs to monoclinic system (space group P21/n), which has the binuclear nine-coordinate structure with tricapped trigonal prismatic conformation for Sm(1) and the pseudomonocapped square antiprismatic conformation for Sm(2). The crystal data are as follows: a = 12.283(6) Å, b = 15.626(7) Å, c = 25.875(12) Å, β = 97.962(7)°, V = 4919(4) Å3, Z = 4, ρ = 1.717 g/cm3, μ = 2.476 mm?1, F(000) = 2536, R = 0.0781, and wR = 0.1745 for 8554 observed reflections with I ≥ 2σ(I).  相似文献   

3.
Single crystal of [Cu(DMSO)2(3,5-DNB)2(OH2)2], where DMSO-dimethylsulfoxide, 3,5-DNB-3,5-dinitrobenzoate, has been synthesized and its crystal structure is determined. Crystals belong to monoclinic symmetry, space group is P21/n, Z = 2, a = 10.911(4) Å, b = 5.362(2) Å, c = 22.673(7) Å, β = 92.06(2)°, V = 1325.8(1) Å3, T = 293 K. Final value of R = 0.040 was obtained for 1804 independent reflections with I > 3σ(I). The structure is built from complex molecules.  相似文献   

4.
The structure of trans*-[PtEnPyNO2(OH,NO2)*]Cl·2H2O was determined by X-ray crystallography. The crystals are monoclinic, a = 31.185(6)Å, b = 12.198(2)Å, c = 8.432(2)Å, b = 100.8(2)°, Z = 8, space group C2/c, R = 0.031 for 2059 reflections with I > 2σ(I). In the complex cation, the polyhedron of the Pt atom is an octahedron formed by five nitrogen atoms from ethylenediamine (Pt-N(aver.), 2.062(7) Å), pyridine (Pt-N, 2.053(7) Å), two NO2 groups (Pt-N, 2.064(7) Å), and the oxygen atom of the OH group in trans position to the nitro group (Pt-O, 1.999(7) Å). Complex cations, anions Cl?, and crystal water molecules are linked together through a branched system of hydrogen bonds.  相似文献   

5.
Two title complexes, [TbIII(Eg3a)(H2O)2] · 4.5H2O (I) (H3Eg3a = 3-carboxymethyl-6, 9-dioxa-3,12-diazatetradecanedioic acid) and K[TbIII(Edta)(H2O)3] · 5H2O(II) (H4Edta = ethylenediamine-N,N,N′,N′-tetraaceti acid), were prepared and characterized by FT-IR, elemental analyses, TGA-DTA-DTG, and single-crystal X-ray diffraction technique. For I, the Tb3+ ion is nine-coordinated by an Eg3a ligand and two coordination water molecules, yielding a monocapped square-antiprismatic (MCSAP) conformation. Complex I crystallizes in the monoclinic system with P21/c space group. The crystal data are as follows: a = 9.237(3), b = 10.018(3), c = 23.580(7) Å, β = 99.021(5)°, V = 2155.2(11) Å3, Z = 4, ρ = 1.822 Mg m?3, μ = 3.353 mm?1, F(000) = 1180, R 1 = 0.0445 and wR 2 = 0.1034 for 4262 observed reflections with I ≥ 2σ(I). For II, the Tb3+ ion is nine-coordinated by an Edta ligand and three coordinate water molecules also yielding a MCSAP conformation. Complex II crystallizes in the orthorhombic system with Fdd2 space group. The crystal data are as follows: a = 19.373(5), b = 35.429(10), c = 12.114(3) Å, V = 8315(4) Å3, Z = 16, ρ = 2.014 Mg m?3, μ = 2.014 mm?1, F(000) = 5024, R 1 = 0.0224 and wR 2 = 0.0557 for 3189 observed reflections with I ≥ 2σ(I). The potassium cations bridge the coordination spheres yielding many infinite long 1-D zigzag-type chains. The molecular structure of I is more stable than that of II. According to thermal analyses, the collapsing temperatures of crystal structure are 314°C for I and 348°C for II, which indicates that the crystal structure of II is more stable.  相似文献   

6.
The hydrothermal synthesis and the structure determination from powder or single crystals X-ray diffraction of 3 new metallophosphonates are presented. Crystal data: Ga(OH)0.28F0.72PO3(CH3): P21/c (n∘ 14), a = 7.7912(7) Å, b = 7.2310(6) Å, c = 9.3114(8) Å, β = 106.873(2) °, V = 502.00(8) Å 3, Z = 4, R1(F) = 0.0409, wR2(F2) = 0.0933 for 1 266 reflections I > 2 σ (I) with 77 parameters. Ga3(OH)3F3(MePO3)2 H2N(CH2)3NH3: P-3 (No. 147), a = b = 7.2514(2) Å, c = 7.9413(2) Å, V = 361.6(3) Å3, Z = 6, RF = 7.95, RBragg = 7.18, Rwp = 17.3, Rp = 12.0. (VIVO(H2O))(CuII(H2O))O3P-CH2-PO3: P212121 (No. 19), a = 6.3884(3) Å, b = 10.7284(4) Å, c = 11.2762(5) Å, V = 772.84(6) Å3, Z = 4, R1(F) = 0.0395, wR2(F2) = 0.0861 for 2 012 reflections I > 2 σ (I) and 128 parameters.  相似文献   

7.
Crystal structures of a series of manganese(I) complexes containing tripodal ligands were determined. For [η3-{CH3C(CH2PPh2)2(CH2SPh)-P,P′,S}Mn(CO)3]PF6 ( 1 ): a = 10.856(3) Å, b = 19.698(3) Å, c = 17.596(5) Å, β = 96.17(2)°, monoclinic, Z = 4, P21/c, R(Fo) = 0.068, Rw(Fo) = 0.055 for 3617 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)(CH2SPh)2-P,P′,S}Mn(CO)3]PF6 ( 2 ): a = 9.890(2) Å, b = 20.403(4) Å, c = 10.269(3) Å, β = 117.44(2)°, monoclinic, Z = 2, P2l, R(Fo) = 0.050, Rw(Fo) = 0.037 for 1760 reflections with Io > 2σ(Io). For [η3-{CH3C(CH2PPh2)2(CH2S)-P,P′,S}Mn(CO)3] ( 4 ): a = 8.191(7) Å, b = 10.495(3) Å, c = 19.858(6) Å, α = 99.61(2)°, β = 96.17(2)°, γ = 92.70(4)°, triclinic, Z = 2, P-I, R(Fo) = 0.048, Rw(Fo) = 0.039 for 2973 reflections with Io > 2σ(Io). There is no significant difference in the bond lengths of Mn-S bonds among three species in their crystal structures [2.325(2) Å in 1; 2.358(4) in 2; 2.380(2) in 4], but the better donating ability of thiolate in complex 4 appears on the lower frequencies of its carbonyl stretching absorptions.  相似文献   

8.
The two title coordination compounds, (NH4)3[TbIII(ttha)]·5H2O (ttha = triethylenetetramine-N,N,N′,N″,N‴,N‴-hexaacetic acid) and (NH4)4[Tb 2 III (ttha)]·9H2O (dtpa = diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid), have been prepared and characterized by FT-IR, elemental analyses, TG-DTA and single crystal X-ray diffraction techniques. The (NH4)3[TbIII(ttha)]·5H2O compound is monoclinic, P21/c; a = 10.398(1) Å, b = 12.791(1) Å, c = 23.199(2) Å; β = 90.914(2)°; V = 3084.9(5) Å3; Z = 4; D calc = 1.704 g/cm3; μ(MoK α ) = 2.376 mm; R = 0.023 and wR 2 = 0.049 for 5429 observed reflections with I ≥ 2σ(I). The [TbIII(ttha)]3− complex anion in the crystal has a nine-coordinate mononuclear molecular structure with pseudo-monocapped square-antiprismatic configuration. The (NH4)4[Tb 2 III (dtpa)2]·9H2O compound is triclinic, P-1; a = 9.739(1) Å, b = 10.010(1) Å, c = 12.968(2) Å; α= 85.890(2)°, β = 77.338(2)°, γ = 77.587(2)°; V = 1204.2(2) Å3; Z = 1; D calc = 1.832 g/cm3; μ(MoK α ) = 3.015 mm; R = 0.024 and wR 2 = 0.060 for 4750 observed reflections with I ≥ 2σ(I). The [Tb 2 III (dtpa)2]4− complex anion has a binuclear structure in the crystal; the two TbIII centers are equivalent and have a nine-coordinate environment with the same pseudo-tricapped trigonal-prismatic configuration. The thermal analysis revealed that the coordination cores of the (NH4)3[TbIII(ttha)]·5H2O and (NH4)4[Tb 2 III (dtpa)2]·9H2O compounds are stable up to 221°C and 252°C, respectively. Original Russian Text Copyright ? 2008 by J. Wang, X. Zh. Liu, X. F. Wang, G. R. Gao, Zh. Q. Xing, X. D. Zhang, and R. Xu The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 49, No. 1, pp. 81–89, January–February, 2008.  相似文献   

9.
The title complexes, K3[Cd(Dtpa)] (H5Dtpa = diethylenetriamine-N,N,N,N′,N′-pentaacetic acid, (I)), K2[Cd(H2O)4][Cd(Edta)(H2O)]2 · 2H2O (H4Edta = ethylenediamine-N,N,N′,N′-tetraacetic acid, (II)), and Na2[Cd(H2O)4][Cd(Edta)(H2O)]2 · 2H2O (III), were prepared, and their compositions and structures were determined by elemental analyses, IR spectra, and single-crystal X-ray diffraction techniques, respectively. In complex I, the Cd is seven-coordinated by one Dtpa ligand yielding a pseudo-monocapped trigonal prism conformation, and the complex crystallizes in the triclinic crystal system with the Pi space group. The crystal data are as follows: a = 8.7300(17), b = 9.1200(18), c = 15.110(3) Å, α = 95.52(3)°, β = 96.59(3)°, γ = 99.63(3)°, V = 1170.0(4) Å3, Z = 2, ρ = 1.754 g/cm3, μ = 1.519 mm?1, F(000) = 616, R = 0.0644 and wR = 0.1712 for 3842 observed reflections with I ≥ 2σ(I). For complex II, in the [Cd(Edta)(H2O)]2? complex anion the Cd2+ ion is seven-coordinated by one Edta ligand and one water molecule, yielding a pseudo-pentagonal bipyramid conformation. In the [Cd(H2O)4]2+ cation, the bridged Cd is six-coordinated, yielding an almost standard octahedral conformation. The complex crystallizes in the monoclinic system with P21/n space group. The crystal data are as follows: a = 9.098(3), b = 16.442(6), c = 12.023(4) Å, β = 91.053(6)°, V = 1798.3(12) Å3, Z = 2, ρ = 2.098 g/cm3, μ = 2.086 mm?1, F(000) =1124, R = 0.0406 and wR = 0.1152 for 3680 observed reflections with I ≥ 2σ(I). In complex III, the conformations of Cd2+ ions are similar to those of the potassium salt complex, and the complex also crystallizes in the monoclinic crystal system with the P21/n space group. The crystal data are as follows: a = 9.134(7), b = 16.500(13), c = 12.075(10) Å, β = 91.054(12)°, V = 1820(2) Å3, Z = 2, ρ = 2.015 g/cm3, μ = 1.856 mm?1, F(000) = 1092, R = 0.0363 and wR = 0.0879 for 3707 observed reflections with I ≥ 2σ(I).  相似文献   

10.
The complex (HDam)2[Ge2(μ-L)2(OH)2] · 4H2O (I) (H4L is tartaric acid, Dam is diantipyrylmethane) was synthesized for the first time. The individual character and composition of I was established by elemental analysis and X-ray diffraction. The thermal stability of I was studied. The coordination sites of H4L in the germanium complex were determined by IR spectroscopy. The structure of I was determined by X-ray crystallography. The crystals of I are triclinic: a = 9.3098(10) Å, b = 9.8088(10) Å, c = 17.6869(10) Å, α = 84.009(10)°, β = 77.926(10)°, γ = 67.088(5)°, V = 1454.3(2) Å3, Z = 2, space group P \(\bar 1\), R = 0.0628 for 6343 reflections with I > 2σ(I). The compound is composed of the complex anions [Ge2(μ-L)2(OH)2]2?, the HDam+ cations, and crystal water molecules. In the dimeric anion, the metal atoms are bound to two completely deprotonated ligands L4?. The latter are coordinated to the metal through the carboxyl (av. Ge-O, 1.911(6) Å) and hydroxyl (av. Ge-O, 1.768(6) Å) oxygen atoms. The coordination of each Ge atom is completed to trigonalbipyramidal by the O atom of the hydroxy ligand in the axial position (av. Ge-O, 1.748(7) Å). Both L4? ligands are D isomers. In the crystal, the complex anions and crystal water molecules are combined by a system of hydrogen bonds.  相似文献   

11.
Two complexes [Zn(SALIMP)(CH3CO2)]2 (1) and [Cu(SALIMP)Cl] (2) are obtained by the reactions of zinc(II) and copper(II) salts with a tridentate Schiff base ligand 2-[[(2-pyridinylmethyl) imino]methyl]phenol (HSALIMP). Their structure is determined by single crystal X-ray diffraction. Data for complex 1: C30H28N4O6Zn2, CCDC number: 668213, M r = 671.3, monoclinic, C2/c, with a = 34.670(5) Å, b = 15.266(2) Å, c = 23.464(4) Å, β = 114.045(2)°, V = 11341(3) Å3, Z = 16, F(000) = 5504, GOOF(F 2) = 0.894, the final R = 0.0520 and wR = 0.1272 for 10515 observed reflections with I > 2σ(I); complex 2: C13H12N2OClCu, CCDC number: 668211, M r = 311.24, triclinic, P-1, with a = 7.4050(8) Å, b = 10.2369(11) Å, c = 16.2873(17) Å, α = 87.728(2)°, β = 87.818(2)°, γ = 78.279(2)°, V = 1207.4(2) Å3, Z = 4, F(000) = 632, GOOF(F 2) = 1.077, the final R = 0.0326 and wR = 0.0381 for 4209 observed reflections with I > 2σ(I).  相似文献   

12.
This paper addresses the general question: what are the significant guest properties selected by this host when interacting with guest molecules in the liquid phase, resulting in cocrystallization of the host and guest? In particular, to what extent do π electrons in a guest molecule effect its potential as a guest? Werner clathrates of the host [Ni(NCS)2(4-ViPy)4] with mixtures of tetrahydrofuran (THF) and cyclic hydrocarbons as guests have been synthesised and their structures elucidated. Clathrate (1): [Ni(NCS)2(4-ViPy)4](1.78 THF)(0.22 cyclohexane), crystallizes in the orthorhombic space groupP bcn a=9.976(6),b=20.630(25),c=19.861 (4) Å,V=4087Å3,Z=4,R=0.087 for 1461 reflections; (2): [Ni(NCS)2(4-ViPy)4](1.76 THF)(0.24 cyclohexene),P bcn ,a=9.987(7),b=20.614(4),c=19.898(4)Å,V=4096Å3,Z=4,R=0.084 for 1304 reflections; (3): [Ni(NCS)2(4-ViPy)4](0.48 THF)(0.52 1,3-cyclohexadiene), tetragonalI41/a,a=16.898(3),b=16.898(3),c=26.463(6)Å,V=7556Å3,Z=8,R=0.120 for 1698 reflections; (4): [Ni(NCS)2(4-ViPy)4](0.36 THF)(1.04 1,4-cyclohexadiene),I41/a,a=16.986(4),b=16.986(4),c=25.896(15)Å,V=7472Å3,Z=8,R=0.103 for 2025 reflections; (5): [Ni(NCS)2(4-ViPy)4](0.35 THF)(1.05 benzene),I41/a,a=17.102(10),b=17.102(10),c=25.498(8)Å,V=7458Å3,Z=8,R=0.118 for 2200 reflections; (6): [Ni(NCS)2(4-ViPy)4](3 benzene), triclinicP1,a=10.432(24),b=11.155(9),c=21.581(7)Å, α=78.70(5), β=82.60(7), γ=74.09(13)°,V=2361Å3,Z=2,R=0.078 for 3427 reflections. Host-guest ratios and, for mixtures of guests, guest1/guest2 ratios, were elucidated by density and NMR. We show that the conformational freedom of the substituted pyridines is not the primary reason for the clathrating ability of Werner hosts. All six structures show no host-guest interaction at the level of van der Waals interactions. As non-bonding interactions are not observed between the host and guest, this study shows that the above host's selectivity by enclathration of particular guest molecules cannot be accounted for by solid state structural analysis.  相似文献   

13.
The title complexes, K[GaIII(Cydta)] · 2H2O(Cydta = trans-1,2-cyclohexanediaminetetraacetic acid) and K[GaIII(Pdta)] · 3H2O (Pdta = propylenediaminetetraacetic acid), were prepared, and their structures were studied by IR spectra, elemental analyses, NMR spectra, and single-crystal X-ray diffraction techniques. In the K[GaIII(Cydta)] · 2H2O complex, the Ga3+ is six-coordinated by the Cydta ligand yielding an octahedral conformation, and the complex crystallizes in the monoclinic system with the P21/c space group. The crystal data are as follows: a = 16.5039(19), b = 13.1499(16), c = 8.5204(10) Å, β = 101.650(2)°, V = 1811.0(4) Å3, Z = 4, ρ = 1.757 g/cm3, μ = 1.805 mm?1, F(000) = 984, R = 0.0291, and wR = 0.0698 for 3713 observed reflections with I ≥ 2σ(I). In the K[GaIII(Pdta)] · 3H2O complex, the Ga3+ is also six-coordinated by the Pdta ligand yielding an almost standard octahedral conformation, and the complex crystallizes in the orthorhombic system with P212121 space group. The crystal data are as follows: a = 8.8913(10), b = 11.6181(13), c = 17.0227(19) Å, V = 1758.4(3) Å3, Z = 4, ρ = 1.757 g/cm3, μ = 1.862 mm?1, F(000) = 952, R = 0.0288, and wR = 0.0724 for 3556 observed reflections with I ≥ 2σ(I).  相似文献   

14.
The diamines PtbipyCl2, and PtenCl2 and their aqua and hydroxy derivatives react with acetonitrile to give the Pt(II) acetamidates [Pt(2,2′-bipy)(NHCOCH3)2] · 4.125 H2O (I) and [enPt(μ-NHCOCH3(μ-OH)Pten](NO3)2 · H2O (II), which are characterized by X-ray diffraction. The crystals of I are triclinic, a = 7.137(10) Å, b = 12.655(3) Å, c = 21.914(6) Å, α = 81.82(2)°, β = 82.12(2)°, γ = 77.72(2)°, V = 1908.6(7) Å3, space group P $\overline 1 $ , Z = 4, R = 0.033 for 3700 reflections. Complex I is a mononuclear acetamidate with terminal (NHCOCH3)? ligands. The crystals of II are monoclinic, a = 11.413(2) Å, b = 10.981(2) Å, c = 14.385(3) Å, β = 105.90(3)°, V = 1733.8(6) Å3, space group P21/n, R = 0.028 for 2797 reflections. Complex II is a dimer with bridging (NHCOCH3)? and (OH)? groups. The Pt-Pt distance is 3.1667(7) Å.  相似文献   

15.
《Polyhedron》1987,6(7):1577-1585
Reaction of [ReOCl3(PPh3)2] with bromophenylhydrazine in methanol yields [ReCl(N2C6H4Br)2(PPh3)2] (1). Complex 1 reacts with arylthiolates to give mixtures of [Re(SAr)(N2C6H4Br)2(PPh3)2] (2) and [Re2(SAr)7(NNR)2]. Complexes 1 and 2 display trigonal bipyramidal geometries with the phosphine ligands occupying the axial sites. A significant feature of the structures is the nonequivalence of the rhenium-diazenido moieties, such that for 1 the ReN(1) and N(1)N(2) distances are 1.80(2) and 1.24(3) Å, while ReN(3) and N(3)N(4) are 1.73(2) and 1.32(3) Å, and for 2 the ReN distances are 1.73(1) and 1.80(2)° with corresponding NN distances of 1.32(2) and 1.25(2) Å. Reaction of (PPh4)[ReO(SPh)4] (3) with unsymmetrically disubstituted hydrazines affords complexes of the type [ReO(SPh)3(NMRR′)] (R = Me, R′ = Ph for 4). Complexes 3 and 4 display distorted square pyramidal geometries with the oxo groups apical. The significant feature of the structure of 4 is the nonlinear ReN(1)N(2) linkage, exhibiting an angle of 145.6(10)°. The angle does not appear to correlate with a significant contribution from a valence form with sp2 hybridization at the α-nitrogen. Crystal data: 1: monoclinic space group, P21/n, a = 12.216(2) Å, b = 19.098(2) Å, c = 20.257(4) Å, β = 106.20(1)°, V = 4538.3(8) Å3 to give Z = 4; structure solution and refinement based on 1905 reflections converged at R = 0.070. 2: monoclinic space group P21/n, a = 14.393(2) Å, b = 18.842(3) Å, c = 20.717(4)Å, β = 110.26(1)°, V = 5270.5(8) Å3 to give Z = 4 for D = 1.53 g cm−1; structure solution and refinement based on 4249 reflections to give R = 0.070. 3: monoclinic space group P21/n, a = 12.531(2) Å, b = 24.577(4) Å, c = 16.922(3) Å, β = 99.06(1)°, V = 5146.2(9) Å3, D = 1.36 g cm−3 for Z = 4, 2912 reflections, R = 0.050. 4: monoclinic space group p21/n, a = 16.137(2) Å, b = 9.863(2) Å, c = 16.668(2) Å, β = 111.12(1)°, V = 2474.7(6) Å3, D = 1.74 g cm−3 for Z = 4, 2940 reflections, R = 0.066.  相似文献   

16.
Dodecanuclcar cluster complexes [Mo12S16(PEt3)10] 1 and [Mo12Se16(PEt3)10] 2 have been prepared by the reactions of [Mo6S8(PEt3)6] with sulfur or [Mo6Se8(PEt3)6] with Cp2TiSe5, respectively, in toluene at refluxing temperature. The structures have been determined at 173 K by X-ray crystallography. The compound 1 ·3CHCl3 crystallizes in the triclinic space group $ {\rm P}\bar 1 $, with a = 14.859(5) Å, b = 15.868(4) Å, c = 14.200(7) Å, α = 100.58(3)°, β = 117.58(3)°, γ = 79.53(2)°, V = 2899(1) Å3, and Z = 1. Full-matrix least-squares refinement using 9016 observed reflections (Io > 2σ(Io)) gave R = 0.056, and Rw = 0.045. The data for 2 ·2CHCl3 are: triclinic, $ {\rm P}\bar 1 $, a = 15.737(4) Å, b = 18.763(9) Å, c = 13.062(4) Å, α = 102.45(3)°, β = 128.54(2)°, γ = 69.49(3)°, V = 2825 Å3, Z = 1, R = 0.096, and Rw = 0.120 for 5922 reflections (Io > 2σ(Io)). The cluster complexes 1 and 2 have two octahedral molybdenum cluster units linked by the rhomboidal intercluster Mo24-E)2 bonding. The intercluster Mo—Mo distances in 1 are 3.419 Å and 2 3.551 Å. The cyclic voltammetry of 1 and 2 shows two oxidation and two reduction steps separated as large as 380–490 mV. The UV-Vis spectra of the dodecanuclear cluster complexes 1 and 2 have an extra weak band at around 744 nm which is absent in the starting octahedral cluster complexes.  相似文献   

17.
Two azafulgides were synthesized and their crystal structures determined by a single crystal X-ray diffraction analysis. The substances crystallized in the following symmetries and cell parameters. C23H19NO3( 2 ): triclinic space group P&1bar; with a = 7.243(2). b = 10.981(6) and c = 12.672(8)Å, α = 80.40(5)°, β = 75.58(4)° and γ = 77.32(3)° Z = 2; C19H19NO3( 1 ): orthogonal space group C2v9-Pmc21 with a = 8.079(8), b = 12.752(9) and c = 15.752(13)Å, Z=4. The calculated densities are 1.26 and 1.27 g/cm3 respectively for 2 and 1 . The crystal structures were determined by direct methods. The least-squares refinement led to R values of 0.044 and 0.058 for 2 and 1 for 2738 and 952 reflections with I > 3σ-(I) respectively.  相似文献   

18.
A cluster complex Cs3Nb2I9 is obtained by a high-temperature reaction of niobium, iodine, and cesium iodide. Its crystal structure is determined: trigonal space group P63/mmc, a = 8.2463(3) Å, c = 19.5419(14) Å, V = 1150.84(10) Å3, R(F) = 0.0614. The compound obtained is characterized by temperature independent paramagnetism in the temperature range 70–290 K.  相似文献   

19.
A new complex [Dy2(Pht)2(HPht)2(Phen)2(H2O)4] (I), where Pht2? = dianion of o-phthalic acid; HPht? = mono-anion of o-phthalic acid; Phen = 1,10-phenanthroline, has been synthesized and the crystal structure was determined by X-ray crystallography. The I crystallizes in the triclinic system, space group $P\bar 1$ with lattice parameters a =10.1126(3) Å, b =10.7029(3) Å, c = 11.9360(3) Å, α = 90.2260(10)°, β = 99.5340(10)°, γ = 100.9810(10)°, V = 1249.87(6) Å3, Z = 2, ρcalcd = 1.881 mg m?3. The photophysical property of I has been studied with excitation and emission spectra.  相似文献   

20.
Two Mn(II) coordination polymers, {[Mn3 (Pfca)6(Phen)2] · 2DMF} n (I) and [Mn(Pfca)2(Phen)(H2O)] n (II) (HPfca = 4-fluorocinnamic acid, Phen = 1,10-phenanthroline), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and singlecrystal X-ray diffraction (CIF files CCDC nos. 967513 (I), 1542972 (II)). Complex I crystallizes in the triclinic crystal system, space group Pī with a = 11.0821(11), b = 12.2632(12), c = 15.0288(15) Å, α = 87.3760(10)°, β = 88.4610(10)°, γ = 81.2220(10)°, V = 2016.0(3) Å3, ρc = 1.369 g/cm3, M r = 1662.25, Z = 1, F(000) = 853, μ = 0.543 mm–1, the final R = 0.0592 and wR = 0.1681 for 15498 observed reflections with I > 2σ(I). Complex II is of monoclinic system, space group P21/c with a = 18.0539(19), b = 8.5806(9), c = 18.758(2) Å, β = 116.5700(10)°, V = 2599.0(5) Å3, ρc = 1.491 g/cm3, M r = 583.44, Z = 4, F(000) = 1196, μ = 0.567 mm–1, the final R = 0.0337 and wR = 0.0853 for 18139 observed reflections with I > 2σ(I). Complex I features linear Mn(II)-trinuclear units, which form 1D chain structure through F···F weak interactions, and complex II is 1D polymeric Mn(II)-chains. Antiferromagnetic coupling interactions exist within Mn(II)- carboxylate trinuclear in I (J =–0.40 cm–1) and Mn(II)-carboxylate chain in II (J =–0.45 cm–1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号