首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A magnetism-assisted chemical vapor deposition method was developed to synthesize branched or iron-encapsulated carbon nanotubes. In the process, the external magnetic field can promote the coalescence or division of the catalyst particles, causing the formation of branched or encapsulated nanostructures. This finding will extend the understanding of the chemical vapor deposition method in a magnetic field and promote the applications of branched or encapsulated nanostructures.  相似文献   

2.
In this work, we present a facile method for preparation of novel polyaniline(PANI)/titanate composite nanotubes by in situ chemical oxidative polymerization directed by poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The block copolymer adsorbed onto the surface of the titanate nanotubes acts as a soft template. The obtained nanocomposite has a core-shell structure in which titanate nanotubes are encapsulated by uniform PANI layers. Their structure and morphology were characterized by various experimental techniques. A possible formation mechanism of composite nanotubes is also proposed in the paper.  相似文献   

3.
A novel nanostructure, cubic silicon carbide (3C-SiC) nanoparticles encapsulated in branched wavelike carbon nanotubes have been prepared by a reaction of 1,2-dimenthoxyethane (CH3OCH2CH2OCH3), SiCl4, and Mg in an autoclave at 600 degrees C. According to X-ray powder diffraction, the products are composed of 3C-SiC and carbon. TEM and HRTEM images show that the as-synthesized products are composed of 3C-SiC nanoparticles encapsulated in branched carbon nanotubes with wavelike walls. The diameter of the 3C-SiC cores is approximately 20-40 nm and the thickness of the carbon shells is about 3-5 nm. In Raman scattering spectroscopy, both the TO (Gamma) phonon line and the LO (Gamma) phonon line have red shifts about 6 cm(-1) relative to that for the bulk 3C-SiC. The photoluminescence (PL) spectrum shows that there are two emission peaks: blue light emission (431 nm) and violet light emission (414 nm). A sequential deposition growth process (with cores as the templates for the shells) for the nanostructure was proposed.  相似文献   

4.
Transportation, release behavior, and stability of a green fluorescent protein (GFP, 3×4 nm) in self‐assembled organic nanotubes with three different inner diameters (10, 20, and 80 nm) have been studied in terms of novel nanocontainers. Selective immobilization of a fluorescent acceptor dye on the inner surface enabled us to not only visualize the transportation of GFP in the nanochannels but to also detect release of the encapsulated GFP to the bulk solution in real time, based on fluorescence resonance energy transfer (FRET). Obtained diffusion constants and release rates of GFP markedly decreased as the inner diameter of the nanotubes was decreased. An endo‐sensing procedure also clarified the dependence of the thermal and chemical stabilities of the GFP on the inner diameters. The GFP encapsulated in the 10 nm nanochannel showed strong resistance to heat and to a denaturant. On the other hand, the 20 nm nanochannel accelerated the denaturation of the encapsulated GFP compared with the rate of denaturation of the free GFP in bulk and the encapsulated GFP in the 80 nm nanochannels. The confinement effect based on rational fitting of the inner diameter to the size of GFP allowed us to store it stably and without denaturation under high temperatures and high denaturant concentrations.  相似文献   

5.
A reduction of Fe3O4 nanowires in nanoscopic reactors of amorphous C:H nanotubes (a-CNTs) was taken to understand features of the chemical reaction mechanism in nanoscale reactors. Fe3O4 nanowires encapsulated in a-CNTs were reduced into iron at a relatively low temperature of 570 degrees C, producing iron nanoparticles encapsulated in CNTs accompanied by the crystallization of the a-CNT shell. It was found that carbon in the a-CNT shell rather than hydrogen (5.5 wt % in it) reduced Fe3O4, showing features different from those in a macroscopic system. The possible mechanisms behind this phenomenon are discussed.  相似文献   

6.
Unprecedented communication takes place between guests G that are reversibly encapsulated in adjacent, but physically separate, chambers of a side-to-side bis-capsule (shown schematically). This was shown by neighbor-dependent NMR chemical shifts of the identical or nonidentical guest molecules. Furthermore, no 1:1 host - guest species is formed.  相似文献   

7.
A novel nanostructure of Ni nanotubes encapsulated in carbon nanotubes has been obtained via the pyrolysis of C2H2 on an array of Ni nanotubes in an alumina membrane support and a possible mechanism has been proposed.  相似文献   

8.
《Solid State Sciences》2012,14(7):874-879
We performed density functional theory (DFT) calculations to investigate the properties of hydrogen-terminated and oxygen terminated models of representative structures of carbon and silicon nanotubes. Different models based on terminating atoms were constructed for each nanotube; model 1: two-end H-terminated, model 2: one-end O-terminated and the other end H-terminated, and model 3: two-end O-terminated. The results of obtained parameters including energy gaps, binding energies, dipole moments, bond lengths, and chemical shifts for the optimized models of the investigated nanotubes indicated that the atomic level properties of nanotubes changed more in the O-terminated models than the H-terminated model. Moreover, the O-terminations could change the magnitude of energy gaps and dipole moments. And finally, for investigating the properties of nanotubes, H-terminations models of nanotubes could be more preferred than other types of terminations.  相似文献   

9.
In this communication we have demonstrated the synthesis of organosilica nanotubes with inner diameter of ~6 nm and their carbonization to form carbon/silica composite nanotubes. Pd nanoparticles. encapsulated in the organosilica and carbon/silica nanotubes show different catalytic activities in the hydrogenation of cyclohexene.  相似文献   

10.
A new model is proposed for the encapsulation of catalyst metal particles by graphite layers that are obtained, for example, in low-temperature chemical vapor deposition production of carbon nanotubes (CNTs). In this model graphite layers are primarily formed from the dissolved carbon atoms in the metal-carbide particle when the particle cools. This mechanism is in good agreement with molecular dynamics simulations (which show that precipitated carbon atoms preferentially form graphite sheets instead of CNTs at low temperatures) and experimental results (e.g., encapsulated metal particles are found in low-temperature zones and CNTs in high-temperature regions of production apparatus, very small catalyst particles are generally not encapsulated, and the ratio of the number of graphitic layers to the diameter of the catalyst particle is typically 0.25 nm(-1)).  相似文献   

11.
The self-assembled supramolecular host [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can encapsulate cationic guest molecules within its hydrophobic cavity and catalyze the chemical transformations of bound guests. The cavity of host 1 is lined with aromatic naphthalene groups, which create a magnetically shielded interior environment, resulting in upfield shifted (1-3 ppm) NMR resonances for encapsulated guest molecules. Using gauge independent atomic orbital (GIAO) DFT computations, we show that (1)H NMR chemical shifts for guests encapsulated in 1 can be efficiently and accurately calculated and that valuable structural information is obtained by comparing calculated and experimental chemical shifts. The (1)H NMR chemical shift calculations are used to map the magnetic environment of the interior of 1, discriminate between different host-guest geometries, and explain the unexpected downfield chemical shift observed for a particular guest molecule interacting with host 1.  相似文献   

12.
In order to investigate the catalytic activity of high temperature treated CoPc toward oxygen reduction, and find the active site of the catalyst, using cobalt (Ⅱ) phthalocyanine (CoPc) as raw material, through thermal chemical vapor deposition method at 850℃ under a current of Ar/H2, two layer well-aligned multiwalled carbon nanotubes (CNTs) were made. The diameters of the well-aligned carbon nanotubes were distributed in the range of 60~120 nm and the length was about 40 μm. The Co particle with 10 nm in diameter was encapsulated in the CNTs compartment. The products were observed by field emission scanning electron microscope (SEM), and transmission electron microscope (TEM). The well-aligned carbon nanotubes were characteriszed by Raman scattering spectrum and X-ray diffraction (XRD). The cyclic voltammetric measurement demonstrates that the CNTs have some effect to prevent the metal nanoparticle encapsulated from eroding rapidly. It is assumed that the small amount of the N element in the CNTs is very necessary for the bamboo-like morphology and the protected action for metal particles against dissolution in the acid medium. The radian of the winding wall should be affected by the amount of the N and the interaction between the N in the carbon network and the metal cluster. In addition, the CNTs greater electrochemically active surface area is a great advantage for any electrocatalytic application.  相似文献   

13.
A reactive radical species, nitric oxide (NO), was encapsulated in a unimolecular form inside an open‐cage fullerene derivative under high‐pressure conditions in the solid state. Surprisingly, the molecular complex showed sharp 1H NMR signals despite the existence of the paramagnetic species inside the carbon cage. Owing to the paramagnetic shifts, the escape rate of the NO was determined experimentally. After constructing a stopper on the rim of the opening, the NO was found to stay inside the cage even at 50 °C. The ESR measurements of the powdery sample showed paramagnetic properties at low temperature. The single‐crystal X‐ray structure analysis clearly demonstrated the existence of the encapsulated NO molecule, suggesting rapid rotation inside the cage. The 1H NMR chemical shifts displayed a large temperature dependence owing to the paramagnetic effects.  相似文献   

14.
It is impossible to fabricate isolated gallium nanomaterials due to the low melting point of Ga (29.8 degrees C) and its high reactivity. We report the bulk synthesis of uniform liquid Ga columns encapsulated into carbon nanotubes through high-temperature chemical reaction between Ga and CH4. The diameter of filled Ga liquid columns is approximately 25 nm, and their length is up to several micrometers. The thickness of the carbon sheaths is approximately 6 nm. Simultaneous condensation of a Ga vapor and carbon clusters results in the generation of Ga-filled carbon nanotubes. A convergent 300 kV electron beam generated in a field emission high-resolution electron microscope is demonstrated to be a powerful tool for delicate manipulation of the liquid Ga nanocolumns: they can be gently joined, cut, and sealed within carbon nanotubes. The self-organization of a carbon sheath during the electron-beam irradiation is discussed. The electron-beam irradiation may also become a decent tool for Ga-filled carbon nanotube thermometer calibration.  相似文献   

15.
Endohedral and external through-space NMR shieldings (TSNMRS) and the magnetic susceptibilities of the fullerene carbon cages of C50, C60, C60(-6), C70, and C70(-6) were assessed by ab initio molecular orbital calculations. Employing the nucleus-independent chemical shift (NICS) concept, these TSNMRS were visualized as isochemical shielding surfaces (ICSS) and were applied to quantitatively estimate either the aromaticity or the anti-aromaticity on the fullerene surface pertaining to the five- or six-membered ring moieties and the shielding of any nuclei enclosed within the carbon cages. Differences between the NICSs calculated at the center of the fullerene carbon cages and the experimental chemical shifts of encapsulated NMR-active nuclei as well as experimental shieldings observed for different encapsulated nuclei were able to be understood readily for the first time.  相似文献   

16.
In this work, graphite encapsulated Fe nanoparticles and thin carbon nanotubes (CNTs) supported on the pristine CNTs, respectively, were synthesized using plasma enhanced chemical vapor deposition via efficiently controlling the flow rate of discharging CH4 and H2 gas. The properties of the obtained hybrid materials were characterized with superconducting quantum interference and field emission measurements. The results showed that the encapsulated Fe nanoparticles had diameters ranging from 1 to 30 nm, and this hybrid nanocomposite exhibited a ferromagnetic behavior at room temperature. Thin CNTs with an average diameter of 6 nm were attached to the surface of the prepared CNTs, which exhibited a lower turn-on field and higher emission current density than the pristine CNTs. The Fe nanoparticles either encapsulated with graphite or used as catalyst for thin CNTs growth were all originated from the pyrolysis of ferrocene.  相似文献   

17.
设计合成了带巯基的聚苯乙炔衍生物,在产物的红外光谱上,3312和776 cm-1处炔氢特征吸收与2106 cm-1处碳碳三键的特征红外吸收消失;在产物的1H-NMR谱上,对应单体上炔氢的化学位移(δ=3.0)消失而对应共轭烯烃的化学位移(δ=6.4)出现;这些谱学特征变化证明了聚合反应的发生.巯基官能化的聚苯乙炔不仅能够发挥聚苯乙炔衍生物对碳纳米管的增溶作用,而且具有将碳纳米管表面巯基功能化的特殊性能.通过巯基与ZnO之间的强相互作用,ZnO纳米粒子被组装到巯基官能化的聚苯乙炔/碳纳米管杂化结构的外壳.本研究提供了制备新的多元复合纳米结构材料的方法.  相似文献   

18.
The construction of efficient light energy converting (photovoltaic and photoelectronic) devices is a current and great challenge in science and technology and one that will have important economic consequences. Here we show that the efficiency of these devices can be improved by the utilization of a new type of nano-organized material having photosynthetic reaction center proteins encapsulated inside carbon nanotube arrayed electrodes. In this work, a generically engineered bacterial photosynthetic reaction center protein with specifically synthesized organic molecular linkers were encapsulated inside carbon nanotubes and bound to the inner tube walls in unidirectional orientation. The results show that the photosynthetic proteins encapsulated inside carbon nanotubes are photochemically active and exhibit considerable improvement in the rate of electron transfer and the photocurrent density compared to the material constructed from the same components in traditional lamella configuration.  相似文献   

19.
NMR chemical shifts were calculated for semiconducting (n,0) single-walled carbon nanotubes (SWNTs) with n ranging from 7 to 17. Infinite isolated SWNTs were calculated using a gauge-including projector-augmented plane-wave (GIPAW) approach with periodic boundary conditions and density functional theory (DFT). In order to minimize intertube interactions in the GIPAW computations, an intertube distance of 8 A was chosen. For the infinite tubes, we found a chemical shift range of over 20 ppm for the systems considered here. The SWNT family with lambda = mod(n, 3) = 0 has much smaller chemical shifts compared to the other two families with lambda = 1 and lambda = 2. For all three families, the chemical shifts decrease roughly inversely proportional to the tube's diameter. The results were compared to calculations of finite capped SWNT fragments using a gauge-including atomic orbital (GIAO) basis. Direct comparison of the two types of calculations could be made if benzene was used as the internal (computational) reference. The NMR chemical shifts of finite SWNTs were found to converge very slowly, if at all, to the infinite limit, indicating that capping has a strong effect (at least for the (9,0) tubes) on the calculated properties. Our results suggest that (13)C NMR has the potential for becoming a useful tool in characterizing SWNT samples.  相似文献   

20.
NMR-based biosensors that utilize laser-polarized xenon offer potential advantages beyond current sensing technologies. These advantages include the capacity to simultaneously detect multiple analytes, the applicability to in vivo spectroscopy and imaging, and the possibility of "remote" amplified detection. Here, we present a detailed NMR characterization of the binding of a biotin-derivatized caged-xenon sensor to avidin. Binding of "functionalized" xenon to avidin leads to a change in the chemical shift of the encapsulated xenon in addition to a broadening of the resonance, both of which serve as NMR markers of ligand-target interaction. A control experiment in which the biotin-binding site of avidin was blocked with native biotin showed no such spectral changes, confirming that only specific binding, rather than nonspecific contact, between avidin and functionalized xenon leads to the effects on the xenon NMR spectrum. The exchange rate of xenon (between solution and cage) and the xenon spin-lattice relaxation rate were not changed significantly upon binding. We describe two methods for enhancing the signal from functionalized xenon by exploiting the laser-polarized xenon magnetization reservoir. We also show that the xenon chemical shifts are distinct for xenon encapsulated in different diastereomeric cage molecules. This demonstrates the potential for tuning the encapsulated xenon chemical shift, which is a key requirement for being able to multiplex the biosensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号