首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UV-Vis spectra of probe phenol blue in CO(2)+ethanol and CO(2)+n-pentane binary mixtures were studied at 308.15 K and different pressures. The experiments were conducted in both supercritical region and subcritical region of the mixtures by changing the compositions of the mixed solvents. On the basis of the experimental results the local compositions of the solvents about phenol blue were estimated by neglecting the size difference of CO(2) and the cosolvents. Then the local composition data were corrected by a method proposed in this work, which is mainly based on Lennard-Jones sphere model. It was demonstrated that the local mole fraction of the cosolvents is higher than that in the bulk solution at all the experimental conditions. In the near critical region of the mixed solvents the local composition enhancement, defined as the ratio of cosolvent mole fraction about the solute to that in the bulk solution, increased significantly as pressure approached the phase boundary from high pressure. The local composition enhancement was not considerable as pressure was much higher than the critical pressure. In addition, in subcritical region the degree of composition enhancement was much smaller and was not sensitive to pressure in the entire pressure range as the concentration of the cosolvents in the mixed solvents was much higher than the concentration at the critical point of the mixtures.  相似文献   

2.
Liquid phase hydrogenation of phenol over Pt/C catalysts was investigated under conventional conditions and supercritical carbon dioxide (scCO2). The equivalent ration of hydrogen to phenol shows a significant effect on the product selectivity. Hydrogenation of phenol in different solvents was also studied, the experimental results show that polarity of solvents influences the yield of cyclohexanone remarkably, scCO2 has the highest one. Catalytic hydrogenation of phenol in scCO2 or sub-scCO2 was emphatically researched. The result is that near the critical point of CO2 phenol has higher reaction activity than that of normal organic solvents, cyclohexanone has 47% in yield and 87% in selectivity.  相似文献   

3.
Sasaki T  Meguro Y  Yoshida Z 《Talanta》1998,46(4):689-695
UV-visible absorption spectra of uranium(VI)-tributylphosphate (U(VI)-TBP) complex dissolved in supercritical CO(2) at 40-60 degrees C and 100-250 kg cm(-2) were recorded. Wavelengths and molar extinction coefficients for the absorption peaks of U(VI)-TBP were determined and confirmed to be in good agreement with those of UO(2)(NO(3))(2)(TBP)(2) complex dissolved in organic solvents such as n-hexane. The absorbance at a given wavelength was proportional to the concentration of U(VI) species in supercritical CO(2), indicating a feasibility of in-situ determination of U(VI) concentration in CO(2) phase. A lower detection limit of U(VI)-TBP complex was estimated to be ca. 1x10(-3)M. The molar extinction coefficient of U(VI)-TBP in supercritical CO(2) decreased slightly with an increase of the density of CO(2) medium, suggesting that the solute-solvent interaction of U(VI)-TBP complex with CO(2) was affected by the density. On the basis of the spectra obtained, phase behavior and solubility of UO(2)(NO(3))(2)(TBP)(2)+H(NO(3))(TBP)+TBP in supercritical CO(2) were elucidated.  相似文献   

4.
The phase behavior of supercritical (SC) CO2 PEG 1000 (PEG with average molecular weight of 1000 g/mol) n-butanol system was studied. It was demonstrated that SC CO2 could induce phase separation of PEG 1000 n-butanol system under suitable conditions. This hints that SC CO2 has potential applications in the separation of mixtures of PEG organic compound.  相似文献   

5.
We report on the local microenvironment surrounding a free dansyl probe, dansyl attached to controlled pore glass (D-CPG), and dansyl molecules attached to trimethylsilyl-capped CPG (capped D-CPG) in pure and alcohol-modified supercritical CO2. These systems were selected to provide insights into the local microenvironment surrounding a reactive agent immobilized at a silica surface in contact with pure and cosolvent-modified supercritical CO2. Local surface-bound dansyl molecule solvation on the CPG surface depends on the dansyl molecule surface loading, the surface chemistry (uncapped versus capped), the bulk fluid density, and the alcohol gas phase absolute acidity. At high dansyl loadings, the surface-bound dansyl molecules are largely "solvated" by other dansyl molecules and these molecules are not affected significantly by the fluid phase. When the dansyl surface loading decreases, dansyl molecules can be accessed/solvated/wetted by the fluid phase. However, at the lowest dansyl loadings studied, the dansyl molecules are in a fluid inaccessible/restrictive environment and do not sense the fluid phase to any significant degree. In uncapped D-CPG, one can poise the system such that the local concentration of an environmentally less responsible cosolvent (alcohol) in the immediate vicinity of surface-immobilized dansyl molecules can approach 100% even though the bulk solution contains orders of magnitude less of this less environmentally responsible cosolvent. In capped C-CPG, the surface excess is attenuated in comparison to that of uncapped D-CPG. The extent of this cosolvent surface excess is discussed in terms of the dansyl surface loading, the local density fluctuations, the cosolvent and surface silanol gas phase acidities, and the silica surface chemistry. These results also have implications for cleanings, extractions, heterogeneous reactions, separations, and nanomaterial fabrication using supercritical fluids.  相似文献   

6.
Pressure dependence of Raman spectra of benzene/CO2 two-component systems was systematically studied at different temperatures and compositions. We estimated the magnitude of inhomogeneous component in Raman bandwidth to get information on the structural fluctuation in the system. It was found that the inhomogeneous bandwidth attains a maximum on an isothermal plane in the temperature-pressure-composition three-dimensional phase diagram when the state point crosses the line connecting the region where the density fluctuation is large (the vicinity of the critical point of neat CO2) and the region where the concentration fluctuation in a binary system is enhanced (the vicinity of the critical solution point). By accumulating such data, we found that the points of large structural fluctuation comprise a sheet that includes the extension line of the gas-liquid equilibrium line in the phase diagram of neat CO2 and the line connecting critical solution points of the two-component system at different temperatures. Interaction between benzene and CO2 molecules in the supercritical region is briefly discussed.  相似文献   

7.
The solvent strength and selectivity of supercritical fluids (SCF) can be greatly enhanced by addition of one or two entrainers into the system. The amount of entrainer added is usually less than 5% (mole fraction). However, even with such slight amount, solubility of organic solutes has been observed to increase by several orders magnitude[1]. Therefore, critical pressure and tem-perature data of these supercritical fluid + cosolvent systems are imperative for the reasonable design of effici…  相似文献   

8.
The polarized IVV and depolarized IVH Raman profiles of the Fermi dyad (1285 cm(-1) and 1388 cm(-1)) of supercritical (SC) CO2 have been measured along the isotherms 307, 309, 313, and 323 K in the reduced density range 0.04相似文献   

9.
We processed phenol with supercritical water in a series of experiments, which systematically varied the temperature, water density, reactant concentration, and reaction time. Both the gas and liquid phases were analyzed post-reaction using gas chromatographic techniques, which identified and quantified the reaction intermediates and products, including H(2), CO, CH(4), and CO(2) in the gas phase and twenty different compounds--mainly polycyclic aromatic hydrocarbons--in the liquid phase. Many of these liquid phase compounds were identified for the first time and could pose environmental risks. Higher temperatures promoted gasification and resulted in a product gas rich in H(2) and CH(4) (33% and 29%, respectively, at 700 °C), but char yields increased as well. We implicated dibenzofuran and other identified phenolic dimers as precursor molecules for char formation pathways, which can be driven by free radical polymerization at high temperatures. Examination of the trends in conversion as a function of initial water and phenol concentrations revealed competing effects, and these informed the kinetic modeling of phenol disappearance. Two different reaction pathways emerged from the kinetic modeling: one in which rate ∝ [phenol](1.73)[water](-16.60) and the other in which rate ∝ [phenol](0.92)[water](1.39). These pathways may correspond to pyrolysis, which dominates when there is abundant phenol and little water, and hydrothermal reactions, which dominate in excess water. This result confirms that supercritical water gasification of phenol does not simply follow first-order kinetics, as previous efforts to model phenol disappearance had assumed.  相似文献   

10.
FTIR spectroscopy was used to study the hydrogen bonding of stearic acid with ethanol, dimethyl sulfoxide (DMSO),and acetonitrile in supercritical CO_2 at 318.15 K, and 12.5 and 16.5 MPa. The concentrations of the cosolvents range from 0—0.6 mol·L~(-1). The area percentage of absorption bands for hydrogen-bonded and nonhydrogen-bonded species was obtained from the IR spectra. The acid and the cosolvents can form hydrogen bond even when their concentrations are very low. At fixed solute concentration, the extent of hydrogenbonding increases with cosolvent concentration. At higher ethanol concentrations, it seems that one stearic acid molecule can hydrogen bond with more than one ethanol molecules simultaneously. It is seen that the strength of the hydrogen bond formed by the acid and the cosolvents is in the order: DMSO>ethanol>acetonitrile.  相似文献   

11.
There are some unique advantages for chemical reactions in SCFs. For example, reaction rates, yields, and selectivity can be tuned by pressure or small amount of cosolvent. SCFs can be used to replace environmentally undesirable solvents. It is not surprised that in recent years the use of SCFs as solvents for chemical reaction media has received much attention. However, mechanism for the effect of pressure and cosolvents on chemical reactions is not very clear. Tautomeric reactions are id…  相似文献   

12.
Titania-silica mesoporous composites have been prepared using polyethylene glycol (PEG) 20,000 as a template direction reagent with the assistance of supercritical carbon dioxide (SC CO(2)). For this preparation method, the composite precursors of tetrabutyl titanate (TBTT) and tetraethyl orthosilicate (TEOS) were dissolved in supercritical CO(2) and impregnated into PEG 20,000 using SC CO(2) as swelling agent and carrier. After removal of the PEG template by calcination in air at suitable temperatures, porous titania-silica composites were obtained. Effects of CO(2) pressure and temperature have been studied on the impregnation ratio during the supercritical fluid condition. The composite products were characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), FTIR spectroscopy, nitrogen sorption-desorption experiments, scanning electronic microscope (SEM), and transmission electron microscope (TEM). XRD and nitrogen sorption-desorption experimental results indicate that the titania-silica composite crystallized in anatase phase and has a preferable BET surface area up to 301.98 m(2)/g. It was also demonstrated that the microstructure and macroproperty of TiO(2)/SiO(2) composites depend strongly on the experimental pressure during the impregnation process in SC CO(2). At suitable CO(2) pressure, silica even can be found in a single crystalline structure in nature by observation of TEM. At the same time, SEM indicates that the composite product existed in a spheric form or a cubic form inserted with many holes. So this work provides a new route to control and obtain the special micrography of TiO(2)/SiO(2) composites with the aid of suitable polymer templates in supercritical CO(2).  相似文献   

13.
Adsorption of supercritical carbon dioxide on two kinds of zeolites with identical chemical composition but different pore structure (NaA and NaX) was studied using the Gibbs ensemble Monte Carlo simulation. The model frameworks for the two zeolites with SiAl ratio being unity have been chosen as the solid structures in the simulation. The adsorption behaviors of supercritical CO2 on the NaA and NaX zeolites, based on the adsorption isotherms and isosteric heats of adsorption, were discussed in detail and were compared with the available experimental results. A good agreement between the simulated and experimental results is obtained for both the adsorbed amount and the bulk phase density. The intermediate configurational snapshots and the radial distribution functions between zeolite and adsorbed CO2 molecules were collected in order to investigate the preferable adsorption locations and the confined structure behavior of CO2. The structure behaviors of the adsorbed CO2 molecules show various performances, as compared with the bulk phase, due to the confined effect in the zeolite pores.  相似文献   

14.
毛灿  鲁洁  韩布兴  闫海科 《中国化学》1999,17(3):231-236
The solubility of stearic acid in supercritical CO2 with acetonitrile (CH3CN) cosolvent was measured at 318.15 K in the pressure range from 9.5 to 16.5 MPa, and the cosolvent concentration ranges from 0. 0 to 5.5 mol% . The solubility increases with acetonitrile concentration and pressure, and it also increases with the apparent density of CO2 d1(moles of CO2 in per liter of fluid) at higher cosolvent concentrations. At lower d1, however, the solubility of the acid at lower acetonitrile concentrations is lower than that in pure CO2 provided that d1 is fixed, which is discussed qualitatively based on the clustering of the components in the system.  相似文献   

15.
Lattice Monte Carlo simulations are used to study the effect of nonionic surfactant concentration and CO2 density on the micellization and phase equilibria of supercritical CO2/surfactant systems. The interaction parameter for carbon dioxide is obtained by matching the critical temperature of the model fluid with the experimental critical temperature. Various properties such as the critical micelle concentration and the size, shape, and structure ofmicelles are calculated, and the phase diagram in the surfactant concentration-CO2 density space is constructed. On increasing the CO2 density, we find an increase in the critical micelle concentration and a decrease in the micellar size; this is consistent with existing experimental results. The variation of the micellar shape and structure with CO2 density shows that the micelles are spherical and that the extension of the micellar core increases with increasing micellar size, while the extension of the micellar corona increases with increasing CO2 density. The predicted phase diagram is in qualitative agreement with experimental phase diagrams for nonionic surfactants in carbon dioxide.  相似文献   

16.
Unusual sorption has been reported in thin polymer films exposed to near-critical CO2. When the supercritical fluid approaches the critical point, the film appears to thicken, but it is not clear whether the film swells or there is an adsorption layer on the film surface. A combination of the gradient theory of inhomogeneous systems and the Sanchez-Lacombe equation of state has been used to investigate this phenomenon. It is shown analytically that surface adsorption on an attractive surface is proportional to the compressibility of the fluid. We have also investigated numerically the sorption of supercritical CO2 on poly(dimethylsiloxane) and polyisobutylene, and supercritical 1,1-difluoroethane on polystyrene. By calculating the Gibbs adsorption and adsorption layer thickness of the supercritical fluids, we found in all cases (different substrates, different supercritical fluids) that maximum adsorption occurs when the supercritical fluid is near its compressibility maximum.  相似文献   

17.
超临界二氧化碳二元体系相平衡性质的研究   总被引:10,自引:1,他引:9  
采用固定体积可视观察法测定了CO2+甲苯、CO2+环己烷、CO2+正丁醛、CO2+异丁醛、CO2+甲醇及CO2+乙醇二元体系的临界点性质,为超临界萃取和化学反应提供基础数据.在对二元体系相行为与单组分超临界相行为进行比较的基础上,对不同化学物质及不同配比的二元体系临界点与二氧化碳临界点之间的关系进行了讨论.  相似文献   

18.
Catalytic hydrogenations of olefins took place effectively in supercritical CO2 with Pd0 nanoparticles dispersed in the fluid phase using a water-in-CO2 microemulsion consisting of water, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as a surfactant, and 1-octanol as a cosolvent. The hydrogenated products dissolved in supercritical CO2 can be separated from the octanol solution containing AOT microemulsions with Pd0 nanoparticles by phase separation (upper phase, supercritical CO2 with hydrogenated products; lower phase, 1-octanol containing AOT microemulsions with Pd0 nanoparticles) accompanied by reduction of CO2 pressure. After collecting the hydrogenated products by flowing the upper CO2 phase to a collection vessel, the Pd0 nanoparticles remaining in the lower phase can be redispersed into supercritical CO2 by pressurizing the system to a pressure where a homogeneous phase is attained. The redispersed nanoparticles can be reused as catalysts for the next runs of the hydrogenations. Triphenylethylene was hydrogenated to 1,1,2-triphenylethane at conversions of 100% (1st-3rd runs), >99% (4th run), and >96% (5th run) using the recycled Pd0 nanoparticles. The feasibility of using other organic solvents as cosolvents is also studied in the present paper.  相似文献   

19.
The local density inhomogeneities in neat supercritical fluids were investigated via canonical molecular dynamics simulations. The selected systems under investigation were the polar and hydrogen-bonded fluid methanol as well as the quadrupolar non-hydrogen-bonded carbon dioxide one. Effective local densities, local density augmentation, and enhancement factors were calculated at state points along an isotherm close to the critical temperature of each system (T(r)=1.03). The results obtained reveal strong influence of the polarity and hydrogen bonding upon the intensity of the local density augmentation. It is found that this effect is sufficiently larger in the case of the polar and associated methanol in comparison to those predicted for carbon dioxide. For both fluids the local density augmentation values are maximized in the bulk density region near 0.7rho(c), a result that is in agreement with experiment. In addition, the local density dynamics of each fluid were investigated in terms of the appropriate time correlation functions. The behavior of these functions reveals that the bulk density dependence of the local density reorganization times is very sensitive to the specific intermolecular interactions and to the size of the local region. Also, the estimated local density reorganization time as a function of bulk density of each fluid was further analyzed and successfully related to two different time-scale relaxation mechanisms. Finally, the results obtained indicate a possible relationship between the single-molecule reorientational dynamics and the local density reorganization ones.  相似文献   

20.
Hydroformylation of propylene has been carried out in supercritical CO2 + H2O and in supercritical propylene + H2O mixtures using Rh(acac)(CO)2 and triphenylphosphine trisulfonate trisodium salt (TPPTS), P(m-C6H4SO3Na)3, as catalyst. Visual observation of the reaction mixtures indicates that in both systems a single phase is present at supercritical temperatures and pressures so that the reaction occurs under homogeneous conditions. After reaction is complete, a biphasic system is formed when the pressure and temperature are reduced to ambient. This facilitates separation of the products in the organic phase and the rhodium catalyst in the aqueous phase. The rhodium concentration in the organic phase was found to be negligible (1.0 × 10−6 mg/ml). Furthermore, compared with traditional hydroformylation technology, the supercritical reactions also show better activity and selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号