首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We applied the combined quantum mechanical (QM)/molecular mechanical (MM) molecular dynamics (MD) simulation method in assessing IR spectra of N-methylacetamide and its deuterated form in aqueous solutions. The model peptide is treated at the Austin Model 1 (AM1) level and the induced dipole effects by the solvent are incorporated in fluctuating solute dipole moments, which are calculated using partial charges from Mulliken population analyses without resorting to any available high-level ab initio dipole moment data. Fourier transform of the solute dipole autocorrelation function produces in silico IR spectra, in which the relative peak intensities and bandwidths of major amide bands are quantitatively compatible with experimental results only when both geometric and electronic polarizations of the peptide by the solvent are dealt with at the same quantum-mechanical level. We cast light on the importance of addressing dynamic charge fluctuations of the solute in calculating IR spectra by comparing classical and QM/MM MD simulation results. We propose the adjustable scaling factors for each amide mode to be directly compared with experimental data.  相似文献   

2.
The phosphorylation effect on the small peptide conformation in water has not been clearly understood yet, despite the widely acknowledged notion that control of protein activity by phosphorylation works mainly by inducing conformational change. To elucidate the detailed mechanism, we performed infrared (IR) absorption and vibrational and electronic circular dichroism studies of both unphosphorylated and phosphorylated tetrapeptides, GSSS 1 and GSSpS 2. The solution structure of the tetrapeptide is found to be little dependent on the presence of the neutral or negatively charged phosphoryl group, and to be a mixture of extended structures including polyproline II (PII) and beta-sheet conformations. The additional band at 1598 cm(-1) in the amide I IR spectrum of the phosphorylated peptide GSSpS at neutral pD appears to be clear spectroscopic evidence for direct intramolecular hydrogen-bonding interaction between the side chain dianionic phosphoryl group and the backbone amide proton. On the basis of amide I IR band analyses, the authors found that the probability of finding the phosphoryl group strongly H bonded to the backbone proton in GSSpS is about 43% at pD 7.0 and 37 degrees C. Such a H-bonding interaction in GSSpS has the biological standard enthalpy and entropy of -15.1 kJ/mol and -51.2 J/K mol, respectively. Comparisons between the experimentally measured IR and VCD spectra and the numerically simulated ones suggested that the currently available force field parameters need to be properly modified. The results in this paper may shed light on an unknown mechanism of controlling the peptide conformation by phosphorylation.  相似文献   

3.
The partial multicanonical algorithm for molecular dynamics and Monte Carlo simulations samples a wide range of an important part of the potential energy. Although it is a strong technique for structure prediction of biomolecules, the choice of the partial potential energy has not been optimized. In order to find the best choice, partial multicanonical molecular dynamics simulations of an alanine dipeptide in explicit water solvent were performed with 15 trial choices for the partial potential energy. The best choice was found to be the sum of the electrostatic, Lennard-Jones, and torsion-angle potential energies between solute atoms. In this case, the partial multicanonical simulation sampled all of the local-minimum free-energy states of the P(II), C(5), α(R), α(P), α(L), and C states and visited these states most frequently. Furthermore, backbone dihedral angles ? and ψ rotated very well. It is also found that the most important term among these three terms is the electrostatic potential energy and that the Lennard-Jones term also helps the simulation to overcome the steric restrictions. On the other hand, multicanonical simulation sampled all of the six states, but visited these states fewer times. Conventional canonical simulation sampled only four of the six states: The P(II), C(5), α(R), and α(P) states.  相似文献   

4.
We applied the multibaric-multithermal (MUBATH) molecular dynamics (MD) algorithm to an alanine dipeptide in explicit water. The MUBATH MD simulation covered a wide range of conformational space and sampled the states of PII, C5, alphaR, alphaP, alphaL, and C7(ax). On the other hand, the conventional isobaric-isothermal simulation was trapped in local-minimum free-energy states and sampled only a few of them. We calculated the partial molar enthalpy difference DeltaH and partial molar volume difference DeltaV among these states by the MUBATH simulation using the AMBER parm99 and AMBER parm96 force fields and two sets of initial conditions. We compared these results with those from Raman spectroscopy experiments. The Raman spectroscopy data of DeltaH for the C5 state against the PII state agreed with both MUBATH data with the AMBER parm96 and parm99 force fields. The partial molar enthalpy difference DeltaH for the alphaR state and the partial molar volume difference DeltaV for the C5 state by the Raman spectroscopy agreed with those for the AMBER parm96 force field. On the other hand, DeltaV for the alphaR state by the Raman spectroscopy was consistent with our AMBER-parm99 force-field result. All the experimental results fall between those of simulations using AMBER parm96 and parm99 force fields, suggesting that the ideal force-field parameters lie between those of AMBER parm96 and parm99.  相似文献   

5.
Circular dichroism (CD) spectra are calculated from the Fourier transform of a time-correlation function. The latter can efficiently be evaluated by wave-packet propagation methods. This approach is similar to the time-dependent evaluation of absorption or Raman spectra. As an application, correlation functions and CD spectra for a molecular dimer are determined and compared to the case of absorption.  相似文献   

6.
7.
The amide I vibrational circular dichroic response of alanine dipeptide analog (ADA) was theoretically investigated and the density functional theory calculation and fragment analysis results are presented. A variety of vibrational spectroscopic properties, local and normal mode frequencies, coupling constant, dipole, and rotational strengths, are calculated by varying two dihedral angles determining the three-dimensional ADA conformation. Considering two monopeptide fragments separately, we show that the amide I vibrational circular dichroism of the ADA can be quantitatively predicted. For several representative conformations of the model ADA, vibrational circular dichroism spectra are calculated by using both the density functional theory calculation and fragment analysis methods.  相似文献   

8.
A quantum mechanics/molecular mechanics molecular dynamics simulation was performed for liquid water to investigate structural and dynamical properties of this peculiar liquid. The most important region containing a central reference molecule and all nearest surrounding molecules (first coordination shell) was treated by Hartree-Fock (HF), post-Hartree-Fock [second-order Moller-Plesset perturbation theory (MP2)], and hybrid density functional B3LYP [Becke's three parameter functional (B3) with the correlation functional of Lee, Yang, and Parr (LYP)] methods. In addition, another HF-level simulation (2HF) included the full second coordination shell. Site to site interactions between oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen atoms of all ab initio methods were compared to experimental data. The absence of a second peak and the appearance of a shoulder instead in the gO-O graph obtained from the 2HF simulation is notable, as this feature has been observed so far only for pressurized or heated water. Dynamical data show that the 2HF procedure compensates some of the deficiency of the HF one-shell simulation, reducing the difference between correlated (MP2) and HF results. B3LYP apparently leads to too rigid structures and thus to an artificial slow down of the dynamics.  相似文献   

9.
A method is presented to interpolate the potential energy function for a part of a system consisting of a few degrees of freedom, such as a molecule in solution. The method is based on a modified finite element (FE) interpolation scheme. The aim is to save computer time when expensive methods such as quantum-chemical calculations are used to determine the potential energy function. The expensive calculations are only carried out if the molecule explores new unknown regions of the conformation space. If the molecule resides in regions previously explored, a cheap interpolation is performed instead of an expensive calculation, using known neighboring points. We report the interpolation techniques for the energies and the forces of the molecule, the handling of the FE mesh, and an application to a simple test example in molecular dynamics (MD) simulations. Good performance of the method was obtained (especially for MD simulations with a preceding Monte Carlo mesh generation) without losing accuracy. © 1997 John Wiley & Sons, Inc. J Comput Chem 18 : 1484–1495, 1997  相似文献   

10.
Potential of hydrogen bond is the function which relates its energy to geometrical parameters of hydrogen bridge: its length R(O…O) and angles between direction O…O and OH group [φ (H-O…O)] and/or lone pair of proton accepting oxygen atom [χ(-O…O)]. Previously we have suggested an approach to design such potentials based on the approximate numerical solution of a reverse problem of the spectrum band shape in the frames of the fluctuation theory of hydrogen bonding. In the given work this method is applied to construction of the two-parameter potentials that depend on parameters {R(O…O), φ (H-O…O} or {φ (H-O…O), χ (-O…O)}. Using them, the spectra of OH vibrations of HOD molecules in a liquid phase are calculated theoretically in good agreement with experiment in the temperature range up to 200 °C. Distributions of angles P(φ, T), P(χ, T), and energies P(E) are calculated also. The same distributions and spectra are independently calculated on the basis of the geometrical parameters of the hydrogen bridges obtained from molecular dynamics models of water. The shapes of the spectral contours and their temperature evolution calculated for computer models turned out to be similar to experimental ones only for the potential that includes the length of H-bond R(O…O).  相似文献   

11.
Molecular dynamics (MD) simulation is the standard computational technique used to obtain information on the time evolution of the conformations of proteins and many other molecular systems. However, for most biological systems of interest, the time scale for slow conformational transitions is still inaccessible to standard MD simulations. Several sampling methods have been proposed to address this issue, including the accelerated molecular dynamics method. In this work, we study the extent of sampling of the phi/psi space of alanine dipeptide in explicit water using accelerated molecular dynamics and present a framework to recover the correct kinetic rate constant for the helix to beta-strand transition. We show that the accelerated MD can drastically enhance the sampling of the phi/psi conformational phase space when compared to normal MD. In addition, the free energy density plots of the phi/psi space show that all minima regions are accurately sampled and the canonical distribution is recovered. Moreover, the kinetic rate constant for the helix to beta-strand transition is accurately estimated from these simulations by relating the diffusion coefficient to the local energetic roughness of the energy landscape. Surprisingly, even for such a low barrier transition, it is difficult to obtain enough transitions to accurately estimate the rate constant when one uses normal MD.  相似文献   

12.
We present in detail a novel measure that improves the reliability of the assignment procedure for vibrational circular dichroism (VCD) spectra extending the useful robustness concept introduced by Nicu and Baerends. This measure enables spectroscopists to single out bands with unreliable VCD intensities that can be disregarded during analysis and determination of absolute configuration. The previously proposed robustness criterion is shown to be gauge dependent and less reliable than the one proposed here.  相似文献   

13.
We study the effect of counter-ion complexation on the example of Cl(-) ions interacting with the [Co(en)(3)](3+) complex. The H-bonding of the N-H groups of the ethylenediamine (en) ligands with the Cl(-) ions may lead to giant enhancement of the VCD intensity for the N-H stretches, but may also lead to VCD sign changes in the finger print region of N-H wagging, twisting and scissoring motions. Such sign changes should not be mistaken for signatures of the presence of the other enantiomer. We elucidate the mechanism for the sign changes and give a recommendation on how to deal with this problem. We also show that the experimental spectrum is only in good accord with the calculations if complexation of 5 Cl(-) ions (two axial, three equatorial) is assumed, but not with two (axial) or three (equatorial) Cl(-) ions, thus showing the potential of VCD to be used as an experimental probe for complexation.  相似文献   

14.
Molecular dynamics (MD) simulations and quantum mechanical electronic structure calculations are used to investigate the nature and dynamics of the phenol-benzene complex in the mixed solvent, benzene/CCl4. Under thermal equilibrium conditions, the complexes are continuously dissociating and forming. The MD simulations are used to calculate the experimental observables related to the phenol hydroxyl stretching mode, i.e., the two dimensional infrared vibrational echo spectrum as a function of time, which directly displays the formation and dissociation of the complex through the growth of off-diagonal peaks, and the linear absorption spectrum, which displays two hydroxyl stretch peaks, one for the complex and one for the free phenol. The results of the simulations are compared to previously reported experimental data and are found to be in quite reasonable agreement. The electronic structure calculations show that the complex is T shaped. The classical potential used for the phenol-benzene interaction in the MD simulations is in good accord with the highest level of the electronic structure calculations. A variety of other features is extracted from the simulations including the relationship between the structure and the projection of the electric field on the hydroxyl group. The fluctuating electric field is used to determine the hydroxyl stretch frequency-frequency correlation function (FFCF). The simulations are also used to examine the number distribution of benzene and CCl4 molecules in the first solvent shell around the phenol. It is found that the distribution is not that of the solvent mole fraction of benzene. There are substantial probabilities of finding a phenol in either a pure benzene environment or a pure CCl4 environment. A conjecture is made that relates the FFCF to the local number of benzene molecules in phenol's first solvent shell.  相似文献   

15.
A few experimental and theoretical studies on the molecular structure of N-acetylproline amide (AP) in D2O solution have been reported recently. However, there is no consensus of the precise structure of AP in D2O because spectroscopically determined structures and a theoretically simulated one have been found to be different from one another. To determine its aqueous solution structure, IR and vibrational circular dichroism spectra of both L- and D-form AP solutions were measured. Molecular dynamics simulations with two different force fields and density functional theory calculations for the trans and cis rotamers of AP were performed to numerically simulate those spectra. Comparisons between experimentally measured and computationally simulated spectra directly suggest that the AP in water adopts a polyproline II-like conformation and that the force field parameter ff03 in the AMBER 8 suite of programs is more realistic and reliable in predicting molecular structure of AP in water than the ff99 in AMBER 7.  相似文献   

16.
Infrared absorption, vibrational circular dichroism, and two-dimensional infrared pump-probe and photon echo spectra of acetylproline solutions are theoretically calculated and directly compared with experiments. In order to quantitatively determine interpeptide interaction-induced amide I mode frequency shifts, high-level quantum chemistry calculations were performed. The solvatochromic amide I mode frequency shift and fluctuation were taken into account by carrying out molecular dynamics simulations of acetylproline dissolved in liquids water and chloroform and by using the extrapolation method developed recently. We first studied correlation time scales of the two amide I vibrational frequency fluctuations, cross correlation between the two fluctuating local mode frequencies, ensemble averaged conformations of the acetylproline molecule in liquids water and chloroform. The corresponding conformations of the acetylproline in liquids water and chloroform are close to the ideal 3(10) helix and the C(7) structure, respectively. A few methods proposed to determine the angle between the two transition dipoles associated with the amide I vibrations were tested and their limitations are discussed.  相似文献   

17.
We report the sum frequency generation (SFG) spectra of aqueous sodium iodide interfaces computed with the methodology outlined by Morita and Hynes (J. Phys. Chem. B 2002, 106, 673), which is based on molecular dynamics simulations. The calculated spectra are in qualitative agreement with experiment. Our simulations show that the addition of sodium iodide to water leads to an increase in SFG intensity in the region of 3400 cm(-1), which is correlated with an increase in ordering of hydrogen-bonded water molecules. Depth-resolved orientational distribution functions suggest that the ion double layer orders water molecules that are approximately one water layer below the Gibbs dividing surface. We attribute the increase in SFG intensity to these ordered subsurface water molecules that are present in the aqueous sodium iodide/air interfaces but are absent in the neat water/air interface.  相似文献   

18.
Various quantum mechanical/molecular mechanical (QM/MM) geometry optimizations starting from an x-ray crystal structure and from the snapshot structures of constrained molecular dynamics (MD) simulations have been performed to characterize two dynamically stable active site structures of phosphodiesterase-5 (PDE5) in solution. The only difference between the two PDE5 structures exists in the catalytic, second bridging ligand (BL2) which is HO- or H2O. It has been shown that, whereas BL2 (i.e. HO-) in the PDE5(BL2 = HO-) structure can really bridge the two positively charged metal ions (Zn2+ and Mg2+), BL2 (i.e. H2O) in the PDE5(BL2 = H2O) structure can only coordinate Mg2+. It has been demonstrated that the results of the QM/MM geometry optimizations are remarkably affected by the solvent water molecules, the dynamics of the protein environment, and the electronic embedding charges of the MM region in the QM part of the QMM/MM calculation. The PDE5(BL2 = H2O) geometries optimized by using the QM/MM method in different ways show strong couplings between these important factors. It is interesting to note that the PDE5(BL2 = HO-) and PDE5(BL2 = H2O) geometries determined by the QM/MM calculations neglecting these three factors are all consistent with the corresponding geometries determined by the QM/MM calculations that account for all of these three factors. These results suggest the overall effects of these three important factors on the optimized geometries can roughly cancel out. However, the QM/MM calculations that only account for some of these factors could lead to considerably different geometries. These results might be useful also in guiding future QM/MM geometry optimizations on other enzymes.  相似文献   

19.
《Vibrational Spectroscopy》2007,43(1):152-164
The infrared absorption (IR) and vibrational circular dichroism (VCD) spectra are reported for six self-complementary deoxyoctanucleotides complexed with the anthracycline drug daunomycin. The oligomers included d(CGCGCGCG)·d(CGCGCGCG), d(CGCATGCG)·d(CGCATGCG) and d(CGCTAGCG)·d(CGCTAGCG), which possess a 5′CGC triplet, and d(CGATATCG)·d(CGATATCG), d(CGTATACG)·d(CGTATACG) and d(CGAATTCG) ·d(CGAATTCG), which have either 5′CGA or 5′CGT triplets. The latter three triplets were said to be favorable intercalation sites for this drug, while the former three were considered to be non-preferred. Changes in the VCD spectra upon drug binding indicate a perturbation of the structure at the base step involving cytosine (Cy) and guanine (Gu), which appears to comprise the daunomycin intercalation site. The VCD spectra also show distinct changes as the drug binds with base sequences that contain 5′CGC triplets compared to those with either 5′CGA or 5′CGT triplets. These differences are attributed to specific binding interactions of the DNA components with the functional groups of the aglycone chromophore and its amino sugar moiety.  相似文献   

20.
The infrared vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of methyl lactate were measured in the 1000-1800 cm(-1) region in the CCl(4) and H(2)O solvents, respectively. In particular, the chirality transfer effect, i.e. the H-O-H bending bands of the achiral water subunits that are hydrogen-bonded to the methyl lactate molecule exhibit substantial VCD strength, was detected experimentally. A series of density functional theory calculations using B3PW91 and B3LYP functionals with 6-311++G(d,p) and aug-cc-pVTZ basis sets were carried out to simulate the VA and VCD spectra of the methyl lactate monomer and the methyl lactate-(H(2)O)(n) complexes with n = 1, 2, 3. The population weighted VA and VCD spectra of the methyl lactate monomer are in good agreement with the experimental spectra in CCl(4). Implicit polarizable continuum model was found to be inadequate to account for the hydrogen-bonding effect in the observed VA and VCD spectra in H(2)O. The methyl lactate-(H(2)O)(n) complexes with n = 1, 2, 3 were used to model the explicit hydrogen-bonding. The population weighted VA and VCD spectra of the methyl lactate-H(2)O binary complex are shown to capture the main spectral features in the observed spectra in aqueous solution. The theoretical modeling shows that the extent of chirality transfer depends sensitively on the specific binding sites taken by the achiral water molecules. The observation of chirality transfer effect opens a new spectral window to detect and to model the hydrogen-bonding solvent effect on VCD spectra of chiral molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号