首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For discrete multiple orthogonal polynomials such as the multiple Charlier polynomials, the multiple Meixner polynomials, and the multiple Hahn polynomials, we first find a lowering operator and then give a (r+1)th order difference equation by combining the lowering operator with the raising operator. As a corollary, explicit third order difference equations for discrete multiple orthogonal polynomials are given, which was already proved by Van Assche for the multiple Charlier polynomials and the multiple Meixner polynomials.  相似文献   

2.
We exploit difference equations to establish sharp inequalities on the extreme zeros of the classical discrete orthogonal polynomials, Charlier, Krawtchouk, Meixner and Hahn. We also provide lower bounds on the minimal distance between their consecutive zeros.  相似文献   

3.
We state and prove characterization theorem for semi-classical orthogonal polynomials on nonuniform lattices (quadratic lattices of a discrete or q-discrete variable). This theorem proves the equivalence between the four characterization properties, namely, the Pearson type equation for the linear functional, the strictly quasi-orthogonality of the derivatives, the structure relation, and the Riccati equation for the formal Stieltjes function. We give the classification of the semi-classical linear functional of class one on nonuniform lattice. Using the definition and the properties of the associated orthogonal polynomials, we prove that semi-classical orthogonal polynomials satisfy the second-order divided difference equation on nonuniform lattices.  相似文献   

4.
ABSTRACT

In this contribution, we explore the well-known connection between Hurwitz and orthogonal polynomials. Namely, given a Hurwitz polynomial, it is shown that it can be decomposed into two parts: a polynomial that is orthogonal with respect to some positive measure supported in the positive real axis and its corresponding second-kind polynomial. Conversely, given a sequence of orthogonal polynomials with respect to a positive measure supported in the positive real axis, a sequence of Hurwitz polynomials can be constructed. Based on that connection, we construct sequences of Hurwitz polynomials that satisfy a recurrence relation, in a similar way as the orthogonal polynomials do. Even more, we present a way to construct families of Hurwitz polynomials using two sequences of parameters and a recurrence relation that constitutes an analogue of Favard's theorem in the theory of orthogonal polynomials.  相似文献   

5.
We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from some modifications of the recurrence coefficients of classical discrete orthogonal polynomials such as: the associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical orthogonal polynomials. Moreover, we find four linearly independent solutions of these fourth-order difference equations, and show how the results obtained for modified classical discrete orthogonal polynomials can be extended to modified semi-classical discrete orthogonal polynomials. Finally, we extend the validity of the results obtained for the associated classical discrete orthogonal polynomials with integer order of association from integers to reals.  相似文献   

6.
Classical orthogonal polynomials in two variables are defined as the orthogonal polynomials associated to a two-variable moment functional satisfying a matrix analogue of the Pearson differential equation. Furthermore, we characterize classical orthogonal polynomials in two variables as the polynomial solutions of a matrix second order partial differential equation. AMS subject classification 42C05, 33C50Partially supported by Ministerio de Ciencia y Tecnología (MCYT) of Spain and by the European Regional Development Fund (ERDF) through the grant BFM2001-3878-C02-02, Junta de Andalucía, G.I. FQM 0229 and INTAS Project 2000-272.  相似文献   

7.
We derive a system of difference equations satisfied by the three-term recurrence coefficients of some families of discrete orthogonal polynomials.  相似文献   

8.
本文给出了测度dψ为强分布的一个必要条件,并得到了dψ为强分布时的Laurent多项式最大零点的一个表示。  相似文献   

9.
In this paper we present a unified theory for studying the so-called Krall-type discrete orthogonal polynomials. In particular, the three-term recurrence relation, lowering and raising operators as well as the second order linear difference equation that the sequences of monic orthogonal polynomials satisfy are established. Some relevant examples of q-Krall polynomials are considered in detail.  相似文献   

10.
We firstly establish the fourth order difference equation satisfied by the Laguerre-Hahn polynomials orthogonal on special non-uniform lattices in general case, secondly give it explicitly for the cases of polynomials r-associated to the classical polynomials orthogonal on linear, q-linear and q-nonlinear (Askey-Wilson) lattices, and thirdly give it semi-explicitly for the class one Laguerre-Hahn polynomials orthogonal on linear lattice.  相似文献   

11.
For little q-Jacobi polynomials and q-Hahn polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as LU factorizations. We develop a general theory of LU factorizations related to complete systems of orthogonal polynomials with discrete orthogonality relations which admit a dual system of orthogonal polynomials. For the q = 0 orthogonal limit functions we discuss interpretations on p-adic spaces. In the little 0-Jacobi case we also discuss product formulas. Dedicated to Dick Askey on the occasion of his seventieth birthday. 2000 Mathematics Subject Classification Primary—33D45, 33D80 Work done at KdV Institute, Amsterdam and supported by NWO, project number 613.006.573.  相似文献   

12.
Using the language of Riordan arrays, we study a one-parameter family of orthogonal polynomials that we call the restricted Chebyshev–Boubaker polynomials. We characterize these polynomials in terms of the three term recurrences that they satisfy, and we study certain central sequences defined by their coefficient arrays. We give an integral representation for their moments, and we show that the Hankel transforms of these moments have a simple form. We show that the (sequence) Hankel transform of the row sums of the corresponding moment matrix is defined by a family of polynomials closely related to the Chebyshev polynomials of the second kind, and that these row sums are in fact the moments of another family of orthogonal polynomials.  相似文献   

13.
A new constructive approach is given to the linearization formulas of symmetric orthogonal polynomials. We use the monic three-term recurrence relation of an orthogonal polynomial system to set up a partial difference equation problem for the product of two polynomials and solve it in terms of the initial data. To this end, an auxiliary function of four integer variables is introduced, which may be seen as a discrete analogue of Riemann's function. As an application, we derive the linearization formulas for the associated Hermite polynomials and for their continuousq-analogues. The linearization coefficients are represented here in terms of3 F 2 and3Φ2 (basic) hypergeometric functions, respectively. We also give some partial results in the case of the associated continuousq-ultraspherical polynomials.  相似文献   

14.
We derive the fourth-order difference equation satisfied by the first associated of classical orthogonal polynomials of a discrete variable. We give it explicitly for first associated of Hahn polynomials from which can be derived by a limiting process the equation satisfied by first associated of all classical families (continuous and discrete).  相似文献   

15.
In this paper, extensions of several relations linking differences of bivariate discrete orthogonal polynomials and polynomials themselves are given, by using an appropriate vector–matrix notation. Three-term recurrence relations are presented for the partial differences of the monic polynomial solutions of admissible second order partial difference equation of hypergeometric type. Structure relations, difference representations as well as lowering and raising operators are obtained. Finally, expressions for all matrix coefficients appearing in these finite-type relations are explicitly presented for a finite set of Hahn and Kravchuk orthogonal polynomials.  相似文献   

16.
We consider the general theory of the modifications of quasi-definite linear functionals by adding discrete measures. We analyze the existence of the corresponding orthogonal polynomial sequences with respect to such linear functionals. The three-term recurrence relation, lowering and raising operators as well as the second order linear differential equation that the sequences of monic orthogonal polynomials satisfy when the linear functional is semiclassical are also established. A relevant example is considered in details.  相似文献   

17.
We give an algorithm for computing orthogonal polynomials over triangular domains in Bernstein–Bézier form which uses only the operator of degree raising and its adjoint. This completely avoids the need to choose an orthogonal basis (or tight frame) for the orthogonal polynomials of a given degree, and hence the difficulties inherent in that approach. The results are valid for Jacobi polynomials on a simplex, and show the close relationship between the Bernstein form of Jacobi polynomials, Hahn polynomials and degree raising.  相似文献   

18.
We study operator semigroups associated with a family of generalized orthogonal polynomials with Hermitian matrix entries. For this we consider a Markov generator sequence, and therefore a Markov semigroup, for the family of orthogonal polynomials on related to the generalized polynomials. We give an expression of the infinitesimal generator of this semigroup and under the hypothesis of diffusion we prove that this semigroup is also Markov. We also give expressions for the kernel of this semigroup in terms of the one-dimensional kernels and obtain some classical formulas for the generalized orthogonal polynomials from the correspondent formulas for orthogonal polynomials on .  相似文献   

19.
Ratio asymptotic results give the asymptotic behaviour of the ratio between two consecutive orthogonal polynomials with respect to a positive measure. In this paper, we obtain ratio asymptotic results for orthogonal matrix polynomials and introduce the matrix analogs of the scalar Chebyshev polynomials of the second kind.  相似文献   

20.
Bayes-empiric Bayes estimation of the parameter of certain one parameter discrete exponential families based on orthogonal polynomials on an interval (a, b) is introduced. The resulting estimator is shown to be asymptotically optimal. The application of this method to three special distributions, the binomial, Poisson and negative binomial, is discussed.The first author was supported by NSF grant DCR-8504620.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号