首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By heating with iron powder at 120–150° some γ-bromo-α, β-unsaturated carboxylic methyl esters, and, less smothly, the corresponding acids, were lactonized to Δ7alpha;-butenolides with elimination of methyl bromide. The following conversions have thus been made: methyl γ-bromocrotonate ( 1c ) and the corresponding acid ( 1d ) to Δα-butenolide ( 8a ), methyl γ-bromotiglate ( 3c ) and the corresponding acid ( 3d ) to α-methyl-Δα-butenolide ( 8b ), a mixture of methyl trans- and cis-γ-bromosenecioate ( 7c and 7e ) and a mixture of the corresponding acids ( 7d and 7f ) to β-methyl-Δα-butenolide ( 8c ). The procedure did not work with methyl trans-γ-bromo-Δα-pentenoate ( 5c ) nor with its acid ( 5d ). Most of the γ-bromo-α, β-unsaturated carboxylic esters ( 1c, 7c, 7e and 5c ) are available by direct N-bromosuccinimide bromination of the α, β-unsaturated esters 1a, 7a and 5a ; methyl γ-bromotiglate ( 3c ) is obtained from both methyl tiglate ( 3a ) and methyl angelate ( 4a ), but has to be separated from a structural isomer. The γ-bromo-α, β-unsaturated esters are shown by NMR. to have the indicated configurations which are independent of the configuration of the α, β-unsaturated esters used; the bromination always leads to the more stable configuration, usually the one with the bromine-carrying carbon anti to the carboxylic ester group; an exception is methyl γ-bromo-senecioate, for which the two isomers (cis, 7e , and trans, 7d ) have about the same stability. The N-bromosuccinimide bromination of the α,β-unsaturated carboxylic acids 1b , 3b , 4b , 5b and 7b is shown to give results entirely analogous to those with the corresponding esters. In this way γ-bromocrotonic acid ( 1 d ), γ-bromotiglic acid ( 3 d ), trans- and cis-γ-bromosenecioic acid ( 7d and 7f ) as well as trans-γ-bromo-Δα-pentenoic acid ( 5d ) have been prepared. Iron powder seems to catalyze the lactonization by facilitating both the elimination of methyl bromide (or, less smoothly, hydrogen bromide) and the rotation about the double bond. α-Methyl-Δα-butenolide ( 8b ) was converted to 1-benzyl-( 9a ), 1-cyclohexyl-( 9b ), and 1-(4′-picoly1)-3-methyl-Δα-pyrrolin-2-one ( 9 c ) by heating at 180° with benzylamine, cyclohexylamine, and 4-picolylamine. The butenolide 8b showed cytostatic and even cytocidal activity; in preliminary tests, no carcinogenicity was observed. Both 8b and 9c exhibited little toxicity.  相似文献   

2.
Irradiation of 2, 2-dimethyl-3-phenyl- ( 1a ), 2, 3-diphenyl-2H-azirine ( 1b ) or the azirine-precursors 1-azido-1-phenyl-propene ( 2a ) and 1-azido-1-phenyl-ethylene ( 2b ), respectively, in benzene in the presence of azodicarboxylic acid diethylester, yields the corresponding 1, 2-carbethoxy-3-phenyl-Δ3-1, 2, 4-triazolines 4a–d (Scheme 1). Refluxing 4 ( a, c or d ) in 0, 2–0, 4M aqueous ethanolic potassium hydroxide leads to the formation of the 1-carbethoxy-3-phenyl-Δ2-1, 2, 4-triazolines 6 ( a, c or d ). Under the same conditions 4b is converted to 3, 5-diphenyl-1, 2, 4-triazole ( 7b , Scheme 2). In 10M aqueous potassium hydroxide solution heating of either 4 ( c or d ) or 6 ( c or d ) yields the 3-phenyl-1, 2, 4-triazoles 7 ( c or d ). Photolysis of 1-carbethoxy-5, 5-dimethyl-3-phenyl-Δ2-1, 2, 4-triazoline ( 6a ) in benzene in the presence of oxygen and trifluoroacetic acid methylester gives the 5-methoxy-2, 2-dimethyl-4-phenyl-5-trifluoromethyl-3-oxazoline ( 13 , Scheme 5). 5, 5-Dimethyl-3-phenyl-1, 2, 4-triazole seems to be the intermediate, which on losing nitrogen gives the benzonitrile-isopropylide ( 3a ).  相似文献   

3.
Irradiation of 2, 3-diphenyl-2H-azirine ( 1a ) and 1-azido-1-phenyl-propene, the precursor of 2-methyl-3-phenyl-2H-azirine ( 1b ), in benzene, with a high pressure mercury lamp (pyrex filter) in the presence of acid chlorides yields the oxazoles 5a–d (Scheme 2). Photolysis of 2, 2-dimethyl-3-phenyl-2H-azirine ( 1c ) under the same conditions gives after methanolysis the 5-methoxy-2, 2-dimethyl-4-phenyl-3-oxazolines 7a, b, d , while hydrolysis of the reaction mixture leads to the formation of the 1, 2-diketones 8a, c, d (Scheme 4). The suggested reaction path for all these reactions is a 1, 3-dipolar cycloaddition of the photochemically generated benzonitrilemethylides 2 to the carbonyl double bond of the acid chlorides to give the intermediates 4 , followed by either elimination of hydrogen chloride or solvolysis (Schemes 2 and 4). Irradiation of 1c in the presence of acetic acid anhydride leads via the intermediate 9 to the 5-hydroxy-3-oxazoline 10 and the 5-methylidene-3-oxazoline 11 (Scheme 5).  相似文献   

4.
Irradiation of 2-methyl- ( 1c ) and 2,2-dimethyl-3-phenyl-2H-azirine ( 1d ) in benzene solution in the presence of carbon dioxide yields 2-methyl-4-phenyl- ( 3c ) and 2,2-dimethyl-4-phenyl-3-oxazolin-5-one ( 3d ), respectively. Similar cycloadducts are observed (see table) when 2,3-diphenyl-2H-azirine ( 1b ) and 1d are irradiated in the presence of phenylisocyanate, o-tolylisocyanate, phenylisothiocyanate or di-o-tolyl-carbodiimide.  相似文献   

5.
The irradiation of the 3-phenyl-2H-azirines 1a–c in the presence of diethyl benzoylphosphonate ( 8 ) in cyclonexane solution, using a mercury high pressure lamp (pyrex filter), yields the diethyl (4, 5-diphenyl-3-oxazolin-5-yl)-phosphonates 9a–c (Scheme 3). In the case of 1b a mixture of two diastereomeric 3-oxazolines, resulting from a regiospecific but non-stereospecific cycloaddition of the benzonitrile-benzylide dipole 2b to the carbonyl group of the phosphonate 8 , was isolated. Benzonitrile-isopropylide ( 2a ), generated from 2,2-dimethyl-3-phenyl-2H-azirine ( 1a ), undergoes a cycloaddition reaction to the ester-carbonyl group of diethyl ethoxycarbonylphosphonate ( 15 ) with the same regiospecificity to give the 3-oxazoline derivative 16 (Scheme 5). The azirines 1a–c , on irradiation in benzene in the presence of diethyl vinylphosphonate ( 17 ) give non-regiospecifically the Δ1-pyrrolines 13a–c and 14a–c (Scheme 6).  相似文献   

6.
Irradiation of 2-methyl- ( 1a ), 2,2-dimethyl- ( 1b ) and 2,3-diphenyl-2H-azirine ( 1c ) in the presence of diethyl mesoxalate yields the corresponding 4-phenyl-5,5-diethoxycarbonyl-3- oxazolines 3a–c . Similar cycloadducts are observed (cf. 6 ) by irradiation of 1b and 1c in the presence of trifluoroacetophenone. When ethyl cyanoformate is used as trapping agent photolysis of 1b or 1c leads to cycloadducts with the carbonyl and nitrile group, respectively which are present in the cyanoformate.  相似文献   

7.
Reactions of 5H,2λ5-Azaphospholes with Arylazocarbonitriles and Dialkyl Acetylenedicarboxylates Azaphospholes 1a – c react with activated arylazocarbonitriles to 1,5,2λ5-diazaphosphorines 2a – c and 3a – c . The reaction of 1a – c with diethyl or dimethyl acetylenedicarboxyiates yields 7H-1,4λ5-azaphosphepines 4a – c . The structures of 2b , 3a , and 4a are established by an X-ray diffraction analysis.  相似文献   

8.
Thermal Rearrangement of 2-Oxa-bicyclo [3.3.1]-non-7-en-3-ones; a Novel Lactone Rearrangement Lactone (+)- 2 was prepared by iodolactonisation and subsequent elimination in 51% yield from the known acid (+)- 1 (Scheme 1). Alkylation of (+)- 2 furnished (+)- 3a , (+)- 3b and (+)- 3c , respectively (Scheme 2). Heating of (+)- 3a in boiling DMF racemized the compound ((+)- 3a ? (?)- 4a ). Heating of (+)- 3b and (+)- 3c , respectively, equilibrated them with (?)- 4b and (?)- 4c , respectively. This results are interpreted as a [3.3]-sigmatropic rearrangement with a transition state as depicted in a .  相似文献   

9.
Note on Biotransformations with Halobacterium halobium: Reduction of Ethyl 3-Oxobutanoate and Hydrolysis of Ethyl 3-Hydroxybutanoate. Cooperative Effects of Reductase and Hydrolase The archaebacterium Halobacterium halobium, growing in saturated NaCl solution, is tested for its ability to achieve biotransformations. We found that this microorganism does accept only a small variety of compounds as substrates. Ethyl acetoacetate ( 1 ) is reduced to ethyl (S)-3-hydroxybutanoate ( 2 ) of optical purity of 40–76%, but in low chemical yields. The reduction is accompanied by hydrolysis of the hydroxy-ester to 3-hydroxybutanoic acid ( 3 ). Hydrolysis of rac-ester 2 by Halobacterium halobium gives (R)- 2 of optical purity of up to 88%, depending upon reaction time, together with the almost racemic hydroxy-acid 3 , both in low chemical yields. Hopes that the ‘extremist’ Halobacterium halobium would be able to effect unique conversions were not fulfilled.  相似文献   

10.
The mass spectral fragmentation of dimethyl glutamate ( 1 ) and its deuterated derivatives 1a , 1b and 1c has been investigated. By loss of a methoxycarbonyl group from the molecular ion an ion of m/e 116 is generated. The latter splits off methanol (m*), the resulting fragment of m/e 84 giving raise to the base peak of the spectrum. Only part of the hydrogen transferred to the leaving group originates from thc amino group, as was suggested earlier [2] [3]. Basing on experiments with deuterated compounds we propose an additional mechanism for the reaction, i.e. hydrogen transfer from C(3) to methoxyl. The fragment generated by both processes is most likely to be a pyrrolinonium ion. Thermal side reactions in the mass spectrometer (formation of pyroglutamic acid ester) followed by fragmentation may lead to the same ion. – The mechanisms discussed are supported by the mass spectral fragmentation of N-acetyl-glutamic acid diesters 3 , 3a , 3b and 3d and of the N, N-dimethyl derivatives 4 and 4a . – The fragmentation reactions investigated are similar to some of 1,3-trimethylenediamine derivatives [7]. This means that there are parallels in the mass spectral fragmentation of difunctional compounds irrespective of the nature of the functional groups.  相似文献   

11.
Irradiation of 3-phenyl-2H-azirine ( 2 ) in benzene solution with a high-pressure mercury lamp yields 4,5-diphenyl-1,3-diazabicyclo[3,1,0]hex-3-ene ( 4 ) and not 3-phenylimino-4-phenyl-1-azabicyclo[2,1,0]pentane ( 1 ), as had been reported previously by others [2]. 2-Methyl-3-phenyl-2H-azirine ( 3 ) yields on irradiation a 2:1 mixture of 2-exo, 6-exo- and 2-exdo, 6-exo-dimethyl-4,5-diphenyl-1,3-diazabicyclo[3,1,0]hex-3-ene (2-exo,6-exo- and 2-endo, 6-exo- 5 ). Irradiation of 2,3-diphenyl-2H-azirine ( 8 ) leads to the formation of 2,4,5-triphenyl-imidazole ( 9 ) and tetra-phenylpyrazine ( 10 ). The suggested reaction path for the generation of 9 and 10 is shown in Scheme 2.  相似文献   

12.
The alkalimetal phosphoraneiminates [KNPCy3]4, ( 1 ) [KNPCy3]4·2OPCy3 ( 2 ) and [CsNPCy3]4·4OPCy3 ( 3 ) (Cy = cyclohexyl) which are obtainable by the reaction of pottassium amide or cesium amide with Cy3PI2 or Cy3PBr2 in liquid ammonia, as well as the lithium derivative [Li4(NPPh3)(OSiMe2NPPh3)3(DME)] ( 4 ) have been characterized by crystal structure determinations. 4 has been formed by the insertion reaction of silicon greaze (‐OSiMe2)n into the LiN bonds of [LiNPPh3]6 in DME solution (DME = 1, 2‐dimethoxyethane). 1 : Space group P&1macr;, Z = 2, lattice dimensions at 193 K: a = 1389.8(1); b = 1408.1(1); c = 2205.2(2) pm; α = 78.952(10)?; β = 81.215(10)?; γ = 66.232(8)?; R1 = 0.0418. 2 : Space group Pbcn, Z = 4, lattice constants at 193 K: a = 2943.6(2); b = 2048.2(1); c = 1893.8(1) pm; R1 = 0.0428. 3 : Space group Cmc21, Z = 4, lattice dimensions at 193 K: a = 2881.6(2); b = 2990.2(2); c = 1883.7(2) pm; R1 = 0.0586. 4 ·1/2DME: Space group R&3macr;c, Z = 12, lattice dimensions at 193 K: a = b = 1583.5(1); c = 11755.3(5) pm; R1 = 0.0495. All complexes have heterocubane structures. In 1‐3 they are formed by four alkali metal atoms and by the nitrogen atoms of the (μ3‐NPCy3) groups, whereas 4 forms a "heteroleptic" Li4NO3 heterocubane.  相似文献   

13.
Reaction of 3-Amino-2H-azirines with Diphenylcyclopropenethione 3-Dimethylamino-2H-azirines ( 4a , 4b ) react with diphenylcyclopropenethione ( 8 ) to give 4(3 H)-pyridinethione derivatives of type 10 (Scheme 3). The reaction mechanism for the formation of 10 is given in Scheme 3 by analogy with a previous reported one [4] [5]. Hydrolysis of the 4(3 H)-pyridinethione 10a yields 2-oxo-2, 3-dihydro-4(1 H)-pyridinethione ( 11 ) and reduction of 10a with sodium borohydride leads to the 2, 3-dihydro-4 (1 H)-pyridinethione 12 (Scheme 4). The results of the reaction of 4a , 4b and the thione 8 demonstrate the similarity to the reaction of 4a , 4b and 2 [5] (cf. Scheme 1). In contrast, the reactions of imines of type 7a with 2 and 8 , respectively, lead to different products (cf. [1] [6]).  相似文献   

14.
Synthesis of Trifluoromethyl-Substituted Sulfur Heterocycles Using 3,3,3-Trifluoropyruvic-Acid Derivatives The reaction of methyl 3,3,3-trifluoropyruvate ( 1 ) with 2,5-dihydro-1,3,4-thiadiazoles 4a, b in benzene at 45° yielded the corresponding methyl 5-(trifluoromethyl)-1,3-oxathiolane-5-carboxylates 5a, b (Scheme 1) via a regioselective 1,3-dipolar cycloaddition of an intermediate ‘thiocarbonyl ylide’ of type 3 . With methyl pyruvate, 4a reacted similarly to give 6 in good yield. Methyl 2-diazo-3,3,3-trifluoropropanoate ( 2 ) and thiobenzophenone ( 7a ) in toluene underwent a reaction at 50°; the only product detected in the reaction mixture was thiirane 8a (Scheme 2). With the less reactive thiocarbonyl compounds 9H-xanthene-9-thione ( 7b ) and 9H-thioxanthene-9-thione ( 7c ) as well as with 1,3-thiazole-5(4H)-thione 12 , diazo compound 2 reacted only in the presence of catalytic amounts of Rh2(OAc)4. In the cases of 7a and 7b , thiiranes 8b and 8c , respectively, were the sole products (Scheme 3). The crystal struture of 8c has been established by X-ray crystallography (Fig.). In the reaction with 12 , desulfurization of the primarily formed thiirane 14 gave the methyl 3,3,3-trifluoro-2-(4,5-dihydro-1,3-thiazol-5-ylidene)propanoates (E)-and (Z)- 15 (Scheme 4). A mechanism of the Rh-catalyzed reaction via a carbene addition to the thiocarbonyl S-atom is proposed in Scheme 5.  相似文献   

15.
Conformational Analysis of Tripeptide Models: The Influence of α,α-disubstituted α-Amino Acids on the Secondary Structure. X-Ray Analysis and Conformational Energy Calculations The X-ray analysis of tripeptide Z-Ile-Val(2-Me)-benzocaine ( 1f ) reveals the presence of a type-III β-turn. Moreover, MMP2 calculations on tripeptides, e.g. Z-Ile-Aib-benzocaine ( 1c ), Z-Ile-D -Val(2-Me)-benzocaine ( 1g ), Z-Ile-Gly(2,2-Pr2)-benzocaine ( 1h ), Z-Ile-Gly-benzocaine ( 1a ), and 1f , fit well into the frame of NMR and CD investigations. They allow considerations on the relative stability of different types of β-turns depending on the peptide sequence, e.g. the kind of α,α-disubstituted amino-acid moieties.  相似文献   

16.
3-Hydroxy-ceph-3-em-esters 5 a – c , versatile intermediates for the preparation of new β-lactam antibiotics, were obtained by ozonolysis of the corresponding 3-methylidene-esters 3 a – c . Reduction and elimination gave the 3-unsubstituted ester 13 ; derivatives 16 a – c and 20 – 22 resulted from O-alkylation. The 3-methoxy-esters 16 a – c were converted into the corresponding acids 23 a – d . Several other transformations of the β-ketoester system are described.  相似文献   

17.
Reactions of 3-Dimethylamino-2,2-dimethyl-2H-azirine with NH-Acidic Heterocycles; Synthesis of 4H-Imidazoles In this paper, reactions of 3-dimethylamino-2,2-dimethyl-2H-azirine ( 1 ) with heterocyclic compounds containing the structure unit CO? NH? CO? NH are described. 5,5-Diethylbarbituric acid ( 5 ) reacts with 1 in refluxing 2-propanol to give the 4H-imidazole derivative 6 (Scheme 2) in 80% yield. The structure of 6 has been established by X-ray crystallography. Under similar conditions 1 and isopropyl uracil-6-carboxylate ( 7 ) yield the 4H-imidazole 8 (Scheme 3), the structure of which is deduced from spectral data and the degradation reactions shown in Scheme 3. Hydrolysis of 8 with 3N HCl at room temperature leads to the α-ketoester derivative 9 , which in refluxing methanol gives dimethyl oxalate and 5-dimethyl-amino-2,4,4-trimethyl-4H-imidazole ( 10 ). On hydrolysis the latter is converted to the known 2,4,4-trimethyl-2-imidazolin-5-one ( 11 ) [6]. Quinazolin-2,4 (1H, 3H)-dione ( 12 ) and imidazolidinetrione (parabanic acid, 14 ) undergo with 1 a similar reaction to give the 4H-imidazoles 13 and 15 , respectively (Schemes 4 and 5). In Scheme 6 two possible mechanisms for the formation of 4H-imidazoles from 1 and heterocycles of type 16 are formulated. The zwitterionic intermediate f corresponds to b in Scheme 1. Instead of dehydration as in the case of the reaction of 1 with phthalohydrazide [3], or ring expansion as with saccharin and cyclic imides [1] [2], f , undergoes ring opening (way A or B). Decarboxylation then leads to the 4H-imidazoles 17 .  相似文献   

18.
On oxobismuthates. The compounds Na3BiO4 and Na2SbO4 Na3BiO4 crystallizes monoclinic in C42h; a = 5.871 b = 6.696, c = 5.650 Å and β = 109,8° with Z = 2. We have a variant of the NaCl type, forming chains 1[BiO4/2+2/1] along [001]. The MADELUNG part of lattice energy (MAPLE) of Na3BiO4 and different other structure models are calculated und discussed. Na3SbO4[a = 5.795, b = 6.595, c = 5.418 Å, β = 109.4°] is isotypic with Na3BiO4.  相似文献   

19.
About the Stereospecific α-Alkylation of β-Hydroxyesters It was found, that dianions derived from β-hydroxyesters with lithium diisopropylamide (LDA) at ?50 to ?20° were alkylated stereospecifically (Scheme 1). The stereospecificity was 95–98%, the threo-compound (threo -2, -3 and -4) being the main product. This was proved for threo -2 and -3 by preparing the β-lactones 7 and 8 , respectively, which were pyrolyzed to trans-1, 4-hexadiene (9) and trans-1-phenyl-2-butene (10) , respectively (Scheme 2). Moreover, the acid threo -6 from threo -3 was converted by dimethylformamide-dimethylacetal to cis-1-phenyl-2-butene (11) (s. footnote 6). The alkylation of α-monosubstituted β-hydroxyesters also turned out to be stereospecific. Reduction of 16 and 18 with actively fermenting yeast furnished (+) -17 and (+) -2. respectively (Scheme 4), which were each mixtures of the (2R, 3S)- and the (2S, 3S)-isomers. Alkylation of (+) -17 with allyl bromide yielded after chromatography (2S, 3S) -19 and of (+) -2 with methyl iodide (2R, 3S) -19 , the oxidation of which finally gave (S)-(?) -20 and (R)-(+) -20 , respectively.  相似文献   

20.
Structure Elucidation of a Dimethylfulvene-trimer. Evidence for a [6+ 4]-Dimerization of 6, 6-Dimethylfulvene Thermal reaction of pure 6, 6-dimethylfulvene ( 1c ) at 60° gives an oligomeric mixture consisting mainly of fulvene-trimers. The structure of the main product 3c is partially elucidated by 1H-NMR. investigations at 400 MHz and definitely confirmed by X-ray analysis. The formation of 3c is explained in terms of a [6+4] dimerization, followed by a 1, 5-proton-shift and a final Diels-Alder reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号