首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 328 毫秒
1.
以葡萄糖作为碳源,通过简单的水热反应获得菱形碳包覆碳酸钴(CoCO3/C)复合材料,并研究了其作为锂离子电池负极材料的电化学性能.晶型和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,用热重-差热分析法(TG-DTA)来测试CoCO3/C材料中碳的含量,用拉曼光谱分析无定型碳的存在. Barrett-Joyner-Halenda (BJH)则用来分析材料的孔径分布情况.实验表明,碳包覆不仅在CoCO3颗粒表面包覆了一层无定性碳,使得CoCO3材料在充放电过程中保持结构的稳定性,也形成了一些大约30 nm左右的介孔,这种孔的存在有助于电解液中离子的传输,从而提高材料的电化学性能.电极材料在0.90C(1.00C = 450 mAh•g-1)倍率下进行循环测试, 500次后的容量仍保持在539 mAh•g-1,显示出了较好的循环性能.当增加到3.00C倍率时CoCO3/C容量为130 mAh•g-1,再恢复到0.15C倍率时容量依然能够达到770 mAh•g-1,表现出了CoCO3/C具有良好的稳定性.  相似文献   

2.
采用湿化学法使用Na2PO3F对LiNi0.83Co0.11Mn0.06O2进行表面改性, 得到F掺杂和LiF包覆的正极材料. X射线衍射谱(XRD)结果显示(003)衍射峰向高角度偏移, 结合X射线光电子能谱(XPS)及透射电子显微镜(TEM)证明F进入到材料晶格内部; 扫描电镜(SEM)、TEM及XPS结果显示, 改性后材料表面存在均匀LiF包覆层, 可提高电极/电解液界面稳定性, 改善循环稳定性; 通过计算锂离子扩散系数, 证明Li+传输速率得到提升, 倍率性能改善. 电化学性能测试结果显示, 材料的循环稳定性和倍率性能均得到显著提高: 在2.75~4.3 V电压窗口下, 材料1 C循环200周后容量保持率由32.2%提高到65.2%, 10 C条件下放电比容量由145.7 mAh/g提高到161.5 mAh/g. 对循环后极片进行XPS分析, 正极-电解质界面(CEI层)层中的LiF, LixPOyFz, NiF2减少, 有利于提高材料稳定性及循环性能.  相似文献   

3.
以柠檬酸为螯合剂和还原剂, NH4VO3为钒源,通过溶胶-凝胶法制备了锂离子电池正极材料Li3V2(PO4)3及其三元掺杂体系Li2.85Na0.15V1.9Al0.1(PO4)2.9F0.1.分别采用X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、能量损失谱(EELS)、拉曼(Raman)光谱、扫描电子显微镜(SEM)、X射线能谱(EDS)、恒流充放电、循环伏安(CV)和交流阻抗谱(EIS)等技术对材料的微观结构、颗粒形貌和电化学性能进行分析.结果表明:在残余碳包覆的基础上, Na、Al、F三元掺杂有利于稳定Li3V2(PO4)3的晶体结构,进一步减少颗粒团聚和提升材料导电特性,促进第三个锂离子的脱出和嵌入,从而显著改善Li3V2(PO4)3的实用电化学性能.未经掺杂的Li3V2(PO4)3原粉在1/9C、1C和6C倍率下的可逆比容量分别为141、119和98 mAh·g-1,而三元掺杂改性材料在1/9C、1C、8C和14C倍率下的比容量分别为172、139、119和115 mAh·g-1.在1C倍率下循环300圈后,掺杂体系的比容量依然高达118 mAh·g-1,比原粉高出32.6%.值得注意的是,这种三元掺杂还使Li3V2(PO4)3的多平台放电曲线近似转变为一条斜线,显示出可能不同的储锂机制.  相似文献   

4.
采用改进的碳酸盐共沉淀与高温固相法相结合的方法制备出了高倍率性能的锂离子电池正极材料Li[Ni1/3Co1/3Mn1/3]O2, 通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安扫描(CV)、电化学阻抗谱(EIS)和电化学性能测试等手段对材料进行表征. 结果表明, 该方法制备的材料具有良好的α-NaFeO2型层状结构(R3m(166)), 一次粒径平均大小为157 nm, 二次颗粒成球形. 同传统碳酸盐制备得到的材料相比, 该材料具备良好的倍率性能和循环性能, 在2.7-4.3 V 电压范围内, 0.1C (1.0C=180 mA·g-1)倍率下, 首次放电比容量为156.4mAh·g-1, 库仑效率为81.9%. 在较高倍率下, 即0.5C、5.0C和20C时, 其放电比容量分别为136.9、111.3、81.3mAh·g-1. 在1C倍率下100次循环容量保持率为92.9%, 高于传统共沉淀法得到的材料(87.0%).  相似文献   

5.
郑卓  吴振国  向伟  郭孝东 《化学学报》2017,75(5):501-507
采用碳酸盐共沉淀-高温固相法制备得到了颗粒平均尺寸约5 μm振实密度为2.1 g·cm-3的均匀微球形高镍LiNi0.5Co0.2Mn0.3O2材料.X射线衍射(XRD)分析和透射电镜(TEM)结果表明这种微球状LiNi0.5Co0.2Mn0.3O2材料具有完善的层状α-NaFeO2结构,过渡金属层原子呈[√3×√3]R30°排布.电化学性能测试结果证实了该材料具有优异的循环稳定性和高倍率性能.具体而言,在2.7~4.3 V,1C下循环100次后的放电比容量为150 mAh·g-1,容量保持率为94.6%,在30C的超高倍率下,放电比容量还能达到96 mAh·g-1.同时,该材料的储能能力也非常突出,在0.1C时比能量密度为687.83 Wh·kg-1(体积能量密度为1444.45 Wh·L-1),在30C时仍达335.27 Wh·kg-1(体积能量密度为704.07 Wh·L-1),非常有潜力应用于商业化高能量密度锂离子电池.  相似文献   

6.
刘黎  田方华  王先友  周萌 《物理化学学报》2011,27(11):2600-2604
采用低温固相法合成了具有纳米结构的LiV3O8材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试显示该材料具有纳米结构.X射线衍射(XRD)表明该材料属于单斜晶系,P21Im空间群.并采用循环伏安法(CV)及电化学阻抗谱图测试对该材料在1、2 mol·L-1Li2SO4水溶液及饱和Li2SO4水溶液中的电化学行为进行了研究.结果表明,LiV3O8在饱和Li2SO4水溶液中具有最好的电化学性能.以LiV3O8作为负极材料,LiNi1/3Co1/3Mn1/3O2作为正极材料,饱和Li2SO4水溶液作为电解液组成了水性锂离子电池,进行恒流充放电测试,结果表明,在0.5C(1C=300 mA·g-1)的充放电倍率下,该水性锂离子电池的首次放电比容量为95.2 mAh·g-1,循环100次后仍具有37.0 mAh·g-1的放电比容量.  相似文献   

7.
采用草酸盐共沉淀法制备了钠掺杂改性的Li0.98Na0.02Ni0.6Co0.2Mn0.2O2正极材料,借助X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量分散谱(EDS)、感应耦合等离子体原子发射光谱(ICP-AES)、电化学阻抗谱(EIS)和恒电流充放电测试等手段对材料的颗粒形貌、晶体结构和电化学性能进行了研究.结果表明,掺钠后的材料具有更完善的α-NaFeO2结构(空间群为+/Ni2+阳离子混排和更大的Li层间距,易于Li+在晶格中的快速脱嵌迁移.电化学性能测试结果证实掺钠样品具有优异的循环稳定性和高倍率性能,在2.7~4.3 V,1C下循环100次后,放电比容量仍为146 mA·h/g(容量保持率为95.4%),在0.1C,0.2C,0.5C,1C,3C,5C,10C和20C时的放电比容量分别为181,168,162,155,143,136,126和113 mA·h/g.  相似文献   

8.
为解决LiNi0.5Co0.2Mn0.3O2正极材料在高温下循环性能差的问题,本文通过固相法对材料进行锆掺杂改性,研究了不同掺杂量对LiNi0.5Co0.2Mn0.3O2晶体结构和电化学性能的影响。研究表明,当锆掺杂量为1% (x)时,可以降低LiNi0.5Co0.2Mn0.3O2结构中的Li+/Ni2+离子混排,有助于材料电化学性能的提高,尤其是高温循环性能。在25 ℃、3.0-4.3 V下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环95次后容量保持率为92.13%,优于未掺杂样品(87.61%)。在55 ℃下, Li(Ni0.5Co0.2Mn0.3)0.99Zr0.01O2在1C循环115次后容量保持率仍有82.96%,远高于未掺杂样品(67.63%)。因此,少量锆掺杂对提升LiNi0.5Co0.2Mn0.3O2的高温循环性能有积极作用。  相似文献   

9.
采用纳米三氧化二铝(Al2O3)对富锂锰基正极材料Li1.2Ni0.13Co0.13Mn0.54O2进行表面均匀包覆, 并考察了最优纳米Al2O3包覆量下材料的电化学性能. 扫描电子显微镜(SEM)和透射电子显微镜(TEM)显示了纳米Al2O3对富锂锰基正极材料表面均匀包覆, X射线衍射分析(XRD)结果表明包覆后富锂材料依然具有良好的层状结构. 恒流充/放电循环测试发现, 包覆后的Li1.2Ni0.13Co0.13Mn0.54O2材料的首次放电比容量为249.7 mA·h/g, 循环100次后的容量保持率为89.5%, 与未包覆的Li1.2Ni0.13Co0.13Mn0.54O2材料相比, 容量保持率提升约13%. 循环伏安(CV)和电化学阻抗(EIS)测试结果表明, 纳米Al2O3包覆可有效抑制材料极化, 降低界面阻抗和电荷转移阻抗, 进而提升富锂锰基正极材料的电化学性能.  相似文献   

10.
以金属有机框架材料MIL-125(Ti)为模板制备了多孔TiO2, 同时引入碳纳米管, 得到碳纳米管交联包覆多孔TiO2的三维导电复合材料. 将该复合材料涂覆在隔膜表面并应用于锂硫电池. 利用透射电子显微镜(TEM)、 扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等对材料的结构和组成进行了表征. 电化学测试结果表明,在0.5C(1C=1675 mA/g)倍率下, CNTs/S复合正极材料表现出高达1051.1 mA·h/g的放电容量, 循环150周后仍可保持在904.8 mA·h/g. 在1C倍率下, 放电容量最高可达1036.9 mA·h/g, 循环250周后仍有763.0 mA·h/g, 展现出了良好的倍率性能和循环稳定性.  相似文献   

11.
采用氧化铝修饰改性富锂锰基正极材料,探讨了表面活性剂在修饰改性中的作用。利用扫描电子显微镜、X射线衍射仪、透射电子显微镜和电化学性能测试等方法对材料结构和电化学性能进行分析。实验结果表明,十二烷基三甲基溴化铵(DTAB)能使Al_2O_3纳米颗粒均匀包覆在富锂锰基正极材料表面,有效增强了复合材料结构的稳定性。在600 mA·g~(-1)电流密度下,该复合材料的初始放电容量为186mAh·g~(-1)。经过500次循环后,其可逆放电比容量仍高于132 mAh·g~(-1),初始容量保持率高达71%。此外,电压衰退也被有效抑制,复合材料表现出优异的综合电化学性能。  相似文献   

12.
In this work, we present a new design for a surface protective layer formed by a facile aqueous solution process in which a nano-architectured layer of LiFePO4 is grown on a Li-rich cathode material, Li1.2Mn0.54Ni0.13Co0.13O2. The coated samples are then calcined at 400 or 500℃ for 5 h. The sample after calcination at 400℃ demonstrates a high initial columbic efficiency of 91.9%, a large reversible capacity of 295.0 mAh·g-1 at 0.1 C (1 C=300 mA·g-1), and excellent cyclability with a capacity of 206.7 mAh·g-1after 100 cycles at 1 C. Meanwhile, voltage fading of the coated sample is effectively suppressed by protection offered by a LiFePO4 coating layer. These superior electrochemical performances are attributed to the coating layer, which not only protects the Li-rich cathode material from side reaction with the electrolyte and maintains the stability of the interface structure, but also provides excess reversible capacity.  相似文献   

13.
P2-type layered oxide Na0.67Fe0.5Mn0.5O2 is recognized as a very promising cathode material for sodium-ion batteries due to the merits of high capacity, high voltage, low cost, and easy preparation. However, its unsatisfactory cycle and rate performances remain huge obstacles for practical applications. Here, we report a strategy of SnO2 modification on P2-type Na0.67Fe0.5Mn0.5O2 to improve the cycle and rate performance. Scanning electron microscope(SEM) and transmission electron microscope(TEM) images indicate that an insular thin layer SnO2 is coated on the surface of Na0.67Fe0.5Mn0.5O2 after medication. The coating layer of SnO2 can protect Na0.67Fe0.5Mn0.5O2 from corrosion by electrolyte and the cycle performance is well enhanced. After 100 cycles at 1 C rate(1 C=200 mA/g), the capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 retains 83 mA·h/g(64% to the initial capacity), while the capacity for the pristine Na0.67Fe0.5Mn0.5O2 is only 38 mA·h/g(33.5% to the initial capacity). X-Ray photoelectron spectroscopy reveals that the ratio of Mn4+ increases after SnO2 modification, leading to less oxygen vacancy and expanded lattice. As a result, the capacity of Na0.67Fe0.5Mn0.5O2 increases from 178 mA·h/g to 197 mA·h/g after SnO2 modification. Furthermore, the rate performance of Na0.67Fe0.5Mn0.5O2 is enhanced with SnO2 coating, due to high electronic conductivity of SnO2 and expanded lattice after SnO2 coating. The capacity of SnO2 modified Na0.67Fe0.5Mn0.5O2 at 5 C increases from 21 mA·h/g(pristine Na0.67Fe0.5Mn0.5O2) to 35 mA·h/g.  相似文献   

14.
吴玥  刘兴泉  张峥  赵红远 《物理化学学报》2014,30(12):2283-2290
以氢氧化锂、乙酸锰、硝酸镁和钛酸丁酯为原料,以柠檬酸为螯合剂,采用溶胶-凝胶法制备了二价镁离子与四价钛离子等摩尔共掺杂的尖晶石型锂离子电池正极材料Li Mn1.9Mg0.05Ti0.05O4.采用热重分析(TGA),X射线衍射(XRD),扫描电子显微镜(SEM),透射电子显微镜(TEM)和电化学性能测试(包括循环伏安(CV)和电化学交流阻抗谱(EIS)测试)对所得样品的结构、形貌及电化学性能进行了表征.结果表明:780°C下煅烧12 h得到了颗粒均匀细小的尖晶石型结构的Li Mn1.9Mg0.05Ti0.05O4材料,该材料具有良好的电化学性能,在室温下以0.5C倍率充放电,在4.35-3.30 V电位范围内放电比容量达到126.8 m Ah·g-1,循环50次后放电比容量仍为118.5m Ah·g-1,容量保持率为93.5%.在55°C高温下循环30次后的放电比容量为111.9 m Ah·g-1,容量保持率达到91.9%,远远高于未掺杂的Li Mn2O4的容量保存率.二价镁离子与四价钛离子等摩尔共掺杂Li Mn2O4,改善了尖晶石锰酸锂的电子导电和离子导电性能,使其倍率性能和高温性能都得到了明显的提高.  相似文献   

15.
采用溶胶-凝胶法并辅以微波热处理合成了Na掺杂改性的Li2-xNaxMnSiO4/C(x=0, 0.05, 0.09, 0.13)复合正极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 恒电流充放电测试、 循环伏安(CV)和交流阻抗(EIS)测试等对材料进行了表征. 结果表明, 经微波辐射后得到的电极材料具有Pmn21型空间结构, 其碳层分布均匀, 粒径细小均匀, 约为15~30 nm. 在微波辅助原位碳包覆和Na掺杂共同作用下, 复合材料的电荷转移电阻明显降低, Li+扩散速率增大, 展现出优良的电化学性能. 在0.1C倍率下Li1.91Na0.09MnSiO4/C样品首次放电比容量为211 mA∙h/g, 50次循环后仍保持80 mA∙h/g的可逆容量; 0.5C和2.0C倍率下的放电比容量分别为106和53 mA∙h/g, 大电流下的可逆容量明显提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号