首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
由于目前用于求解湍流自然对流流动与传热的k-ε模型在应用过程中存在不足,结合高雷诺数k-ε模型需要借助壁面函数法来确定壁面上相关参数值和低雷诺数k-ε模型在近壁区布置更多节点以便获得粘性底层详细信息的特点,重新定义了湍流普朗特数σt的计算式,提出了一种修正的k-ε新模型;利用该模型对封闭方腔内的湍流自然对流流动与传热进行了数值分析。结果表明:与文献中数值模拟结果相比,当108≤Ra≤1014时本文模型所得壁面平均努塞尔特数更接近文献中的实验值,与实验值之间的相对误差在8%以内;壁面的局部努塞尔特数与文献中的实验值吻合得较好。这说明本文模型用于求解封闭腔内湍流流动与传热问题是合适的,比其它湍流模型更能准确地描述封闭腔内湍流自然对流换热中边界层发展与壁面传热特性之间的内在联系。  相似文献   

2.
提出了将谱元方法应用到极坐标系下,利用极坐标系下的谱元方法求解环形空间内自然对流问题。具体求解了原始变量速度和压力的不可压缩Navier-Stokes方程和能量方程,通过在时间方向采用时间分裂方法和空间采用谱元方法对方程进行离散求解,取得了与基准解较一致的计算结果。  相似文献   

3.
采用二阶全展开ETG分裂步有限元方法,通过对流动拓扑的详细分析,在排除网格密度影响的基础上,结合二分法给出封闭方腔内空气和水两种典型流体自然对流发生第一次分岔时的临界Rayleigh数。计算结果表明,该方法可用于进行不同Prandtl数条件下方腔内自然对流流动第一次分岔的数值预报,可作为后续各阶分岔及转捩数值预报研究的基础。在相应的条件下,封闭方腔内空气比水更容易发生分岔,且空气的流动结构相对于水表现出一定的倾斜性。  相似文献   

4.
采用二阶全展开Euler-Taylor-Galerkin分裂步有限元方法,在指定的网格密度条件下,在流动对应的普朗特数取为0.71,雷诺数取为104的情况下,数值分析了热肋、冷肋、上绝热肋、下绝热肋等四种不同属性肋片对封闭方腔内典型自然对流流动的影响.计算结果表明,肋片的存在对封闭方腔内的自然对流及相应的传热效率具有较强的影响,对流流动结构以及平均Nusselt数随肋片的属性发生较大的改变.  相似文献   

5.
王小华 《计算力学学报》2012,29(2):249-254,261
本文采用二阶全展开ETG(Euler-Taylor-Galerkin)分裂步有限元方法,对长宽比为3.5(L/B=3.5,如图 1所示)的封闭矩形腔体内,三种Pr数条件下,定常层流范围内,流体自然对流叉形分岔随Rayleigh数的演化过程进行了数值模拟。研究结果表明,该矩形腔内对应三种Pr数条件下,流体的叉形分岔的演化过程中,在第二次模态Ⅱ型叉形分岔之后,均会出现两个较小尺度涡旋合并,突变为一个较大尺度涡旋的全新叉形分岔模态。即在某临界Ra数两侧,存在定常四涡结构和定常三涡结构两个定常解支,当系统控制参数Ra越过临界值,前者被后者突发性取代,这是完全不同于传统叉形分岔的逆叉形分岔。其数值预报,则采用分半法结合流动拓扑结构及典型截面处速度扩线上鞍点的变化来确定。计算结果表明,在计算的Pr数条件下,随Pr数的增加逆叉形分岔对应临界Ra数的取值也会提高。  相似文献   

6.
采用笔者等发展的二阶全展开Euler-Taylor-Galerkin分裂步有限元方法,经过对算法精度验证,在确定不同网格密度对计算结果影响的基础上,确定出计算所需网格密度的必要条件,并在指定的网格密度条件下,分析了热肋片宽度对封闭方腔内典型自然对流流动的影响,流动对应的Pr=0.71,Ra=104。计算结果表明,随热肋...  相似文献   

7.
运用Simple算法对二维流体力学基本方程组进行了数值模拟,探讨了普朗特数(Pr)为0.0272时矩形腔体底部周期加热对对流时空斑图的影响。当水平流动雷诺数(Re)为0时,发现了由正弦波周期加热引起的稳定的局部定常对流。当Re≠0时,由于正弦波周期加热与水平流动相互作用,获得了由正弦波周期加热和水平流动引起的局部行波对流。进一步比较和讨论了底部正弦波周期加热局部对流和混合流体Rayleigh-Benard局部对流的时空斑图,发现它们存在不同的机理。  相似文献   

8.
对Eggels和Somers提出的热格子Boltzmann格式进行了改进. 在不可压缩流动的假设下,提出了一种新的温度平衡分布函数,可以克服压缩性对温度统计的影响,并且相应地修正了统计宏观温度的方法. Eggels和Somers的方法对速度和温度均采用半步长反弹格式边界条件,适合无滑移的速度边界条件.但是对温度采用该边界条件在物理本质上显得不够准确,所以在边界上对二者统一采取算法既简单又容易实现的非平衡态外推格式,同时可以与Boltzmann格式的整体二阶精度保持一致. 最后,利用改进的热格子Boltzmann方法(TLBM)模拟了Ra=10^6和Pr=0.71(空气)的方腔中的自然对流,模拟得到的流动参数与其它数值方法的结果吻合得很好,表明改进的热格子Boltzmann方法可以有效准确地模拟非等温流动.   相似文献   

9.
马丽娟  徐丰  胡非  张德良 《力学与实践》2006,28(5):19-23,38
利用二维数值模拟的方法研究了侧加热腔体内的自然对流.基于数值模拟结果,描述了水平热入侵流(intrusion)的整个演化过程,并对该过程的物理机制进行了讨论.结果表明:当热入侵流抵达腔体冷壁后,由于冷壁无法卷入所有的热入侵流,热入侵流在冷上角堆积并产生一个反向流动,在冷壁边界层附近形成一个顺时针涡,该涡在浮力效应驱动下可返回热壁,并在腔体的冷热壁之间形成了腔体尺度的流体振荡,即内重力波.  相似文献   

10.
凝固界面前沿自然对流的实验研究   总被引:2,自引:0,他引:2  
吕衣礼  黄旭  周尧和 《力学学报》1993,25(6):716-720
本文在水平Bridgman定向凝固装置中,对超薄试样中固液界面前沿的自然对流进行了实验研究。发现在厚度仅为200μm—700μm的试样中,由于水平温度梯度的存在,凝固界面附近仍然存在着不可忽视的自然对流,并系统研究了各种不同因素对界面前沿热对流的影响规律,为界而过程的微观分析和凝固理论的研究提供了丰富的信息,为采用该装置进行透明有机物模拟研究提供了设计依据。  相似文献   

11.
The transient convective motion in a two-dimensional square cavity driven by a temperature gradient is analysed. The cavity is filled with a low-Prandtl-number fluid and the vertical walls are maintained at constant but different temperatures, while the horizontal boundaries are adiabatic. A control volume approach with a staggered grid is employed to formulate the finite difference equations. Numerically accurate solutions are obtained for Prandtl numbers of 0·001, 0·005 and 0·01 and for Grashof numbers up to 1 × 107. It was found that the flow field exhibits periodic oscillation at the critical Grashof numbers, which are dependent on the Prandtl number. As the Prandtl number is decreased, the critical Grashof number and the frequency of oscillation decrease. Prior to the oscillatory flow, steady state solutions with an oscillatory transient period were predicted. In addition to the main circulation, four weak circulations were predicted at the corners of the cavity.  相似文献   

12.
Convective flows of a small Prandtl number fluid contained in a two-dimensional vertical cavity subject to a lateral thermal gradient are studied numerically. The chosen geometry and the values of the material parameters are relevant to semiconductor crystal growth experiments in the horizontal configuration of the Bridgman method. For increasing Rayleigh numbers we find a transition from a steady flow to periodic solutions through a supercritical Hopf bifurcation that maintains the centro-symmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation, the periodic solution loses stability in a subcritical Neimark–Sacker bifurcation, which gives rise to a branch of quasiperiodic states. In this branch, several intervals of frequency locking have been identified. Inside the resonance horns the stable limit cycles lose and gain stability via some typical scenarios in the bifurcation of periodic solutions. After a complicated bifurcation diagram of the stable limit cycle of the 1:10 resonance horn, a soft transition to chaos is obtained. PACS 44.25.+f, 47.20.Ky, 47.52.+j  相似文献   

13.
The transient thermal boundary layer flow around a square obstruction placed at the middle of the hot wall in a differentially heated cavity is visualized using a shadowgraph technique. The results show that the thermal boundary layer flow, which is blocked by the obstruction, firstly forms an intrusion head under the obstruction (the lower intrusion head). Subsequently, the lower intrusion head bypasses the obstruction and reattaches to the down-stream boundary. During the reattachment process, a more complicated flow is induced, and eventually both the lower intrusion head and the thermal boundary layer destabilize. After the lower intrusion head is convected away, the thermal boundary layer flow re-stabilizes. At the quasi-steady state, the thermal boundary layer forms a double-layer structure, which is split into two sections by the obstruction. It is demonstrated that both the transient processes and the quasi-steady state flow structures of the thermal boundary layer are significantly altered by the obstruction in comparison with the case without the obstruction.  相似文献   

14.
Natural convective flow and heat transfer in an inclined quadrantal cavity is studied experimentally and numerically. The particle tracing method is used to visualize the fluid motion in the enclosure. Numerical solutions are obtained via a commercial CFD package, Fluent. The working fluid is distilled water. The effects of the inclination angle, ? and the Rayleigh number, Ra on fluid flow and heat transfer are investigated for the range of angle of inclination between 0° ? ? ? 360°, and Ra from 105 to 107. It is disclosed that heat transfer changes dramatically according to the inclination angle which affects convection currents inside, i.e. flow physics inside. A fairly good agreement is observed between the experimental and numerical results.  相似文献   

15.
The unsteady natural convection flow adjacent to the finned sidewall of a differentially heated cavity is numerically investigated through comparisons between the cases with a conducting fin and an adiabatic fin. The results show that the flow and temperature structures in the transition to a periodic flow induced by a conducting fin are considerably different from those by an adiabatic fin. Based on the present numerical results, the temporal development and spatial structures of the flow adjacent to the finned sidewall are described, and instabilities are characterized. It is found that the conducting fin improves the transient convective flows in the cavity and enhances heat transfer across the cavity (by up to 52% in comparison with the case without a fin).  相似文献   

16.
17.
18.
In the present study, the two-dimensional (2-D) stability properties of the vertical boundary layers in a cavity that is differentially heated over two opposing vertical walls is considered. The study is performed by introducing artificial, controlled perturbations at the base of the vertical boundary layer along the hot cavity wall and by following the evolution of these disturbances. For small initial perturbations, the evolution is governed by linear effects. This method accurately predicts the frequency of the bifurcation, which occurs for (much) larger Rayleigh numbers. Convective instability sets in for Rayleigh numbers much smaller than those at which the absolute instability (i.e., the bifurcation) occurs, and these Rayleigh numbers are in reasonable agreement with those for the boundary layer along a plate. The absolute instability does not result from the first wave which becomes unstable. For small Prandtl numbers (≤ 2), the unstable waves which lead to the absolute instability are shear-driven, and a single frequency is introduced in the flow after the bifurcation. For larger Prandtl numbers, the unstable waves are buoyancy driven and no single-frequency unsteady flow is observed after the bifurcation.  相似文献   

19.
Two-dimensional numerical simulations of laminar natural convection in a partially cooled, differentially heated inclined cavities are performed. One of the cavity walls is entirely heated to a uniformly high temperature (heat source) while the opposite wall is partially cooled to a lower temperature (heat sink). The remaining walls are adiabatic. The tilt angle of the cavity is varied from 0° (heated from left) to −90° (heated from top). The fast false implicit transient scheme (FITS) algorithm, developed earlier by the same authors, is modified to solve the derived variables vorticity-streamfunction formulation. The effects of aspect ratio (AR), sink–source ratio and tilt angle on the average Nusselt number are examined through a parametric study; solutions are obtained for two Grashof numbers, 105 and 107. Flow patterns and isotherms are used to investigate the heat transfer and fluid flow mechanisms inside the cavity. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents experimental results that aim to document the phenomenon of cooling by natural convection of an array of vertical plates with uniform and equal heat fluxes. The working fluid is air. The effect of several factors on the plate temperature distribution was determined. These factors are the spacing of the plates, the existence of a floorlike flow obstruction near the entrance of the vertical channel, and the existence of a ceilinglike flow obstruction near the exit of the vertical channel. In several cases, these factors had a paramount effect on the plate temperature distribution. Examined also was the impact on the effectiveness of the natural convection cooling of a second row of plates positioned under the row of plates under investigation in an aligned or a staggered fashion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号