首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
The kinetics of gas-phase reaction of CH3CF2I with HI were studied from 496 to 549K and have been shown to be consistent with the following mechanism: A least squares treatment of the data gave where θ = 2.303 RT kcal/mole. The observed activation energy E1 was combined with E2 = 0 ± 1 kcal/mole to yield The result, combined with data for several C? I bond dissociation energies, leads us to conclude that the C(sp3)? I bond is relatively insensitive to F for H substitution and that the C(sp2)–I bond has considerable double-bond character.  相似文献   

2.
The kinetics of the gas-phase reaction of CH3F with I2 have been studied spectrophotometrically from 629 to 710 K, and were determined to be consistent with the following mechanism: (1) A least-squares analysis of the kinetic data taken in the initial stages of reaction resulted in where θ = 4.575T/1000 kcal/mol. The errors represent one standard deviation. The experimental activation energy E4 = 30.8 ± 0.2 kcal/mol was combined with the assumption E3 = 1 ± 1 kcal/mol and estimated heat capacities to obtain The enthalpy change at 298 K was combined with selected thermochemical data to derive The kinetic studies of ?HF2 and CH2F2 have been reevaluated to yield These results are combined with literature data to yield the C? H, C? F, and C? Cl bond dissociation energies in their respective fluoromethanes, and the effect of α-fluorine substitution is discussed.  相似文献   

3.
本文利用流动余辉技术研究了亚稳态He(2^3S)与CH3I和CH3Br传能时分子的解离激发过程。实验中测定了产物的相对分布、CH(A, v'=0)的转动布居和主要碎片的形成速率常数。  相似文献   

4.
1 INTRODUCTION Interhalogen compounds have played an impor- tant role in environment and chemical engineering production. During the course of ozone exhaustion induced by sunlight in polar region, Br2, BrCl and HOBr are all precursors of Br atom[1]. Lately, scien- tists have detected that the content of BrCl in polar region sunlight was 35 ppt, larger than that of Br2 (25 ppt). Previous studies suggested that the con- centration of BrCl and O3 exhibits obvious negative correlation: w…  相似文献   

5.
6.
We have studied the effect of vibrational mode activation in the CF3 radical on the bromine abstraction reaction; CF3 + Br2 → CF3Br + Br. Excess vibrational energy resides in the symmetric modes of the radical after 248 nm photolysis of the parent molecule, CF3I. Our data indicate that the hot radicals react no faster than thermalized CF3, and may actually have a lower cross-section for reaction. Dynamical factors that result in poor coupling of the vibrational energy to the reaction coordinate, as well as other similar considerations, could be responsible for the experimental observations. In addition, we have made an independent determination of the rate for the bromine abstraction reaction of (1.08 ± .13) × 1012 s?1 cm3 mol?1.  相似文献   

7.
The kinetics of the thermal bromination reaction have been studied in the range of 173–321°C. For the step we obtain where θ=2.303RT cal/mole. From the activation energy for reaction (11), we calculate that This is compared with previously published values of D(CF3?I). The relevance of the result to published work on kc for a combination of CF3 radicals is discussed.  相似文献   

8.
The thermal addition of CF3O3CF3(T) to CF2CCl2(E) has been investigated between 49.6 and 69.5°C. The initial pressure of CF3O3CF3 was varied between 7 and 240 torr and that of CF2CCl2 between 4 and 600 torr. Four products of formula CF3O(E)j OOCF3, where j = 1 → 4 are formed. The sum of the products Σ CF3O(E)jOOCF3 is equal to the amount of trioxide decomposed. The reaction is homogeneous. Its rate is not affected by the total pressure and the presence of inert gas. It is a free radical telomerization with four basic steps: thermal decomposition of CF3O3CF3 into CF3O. and CF3O2., chain initiation by addition of CF3O. to olefin incorporated in, and telomeric radicals termination. The consumption of alkene is well represented by the equation: where (d[E]/d[T]) = is the mean chain length of telomerization. varies from 1.45 at 1.5 torr of E to 3.3 at 400 torr of E. Above this pressure E has no influence on . The estimated value of the constant for the addition of telomeric radicals to alkene is:   相似文献   

9.
The kinetics of the gas phase reaction between NO2 and CF2CCl2 has been investigated in the temperature range from 50 to 80°C. The reaction is homogeneous. Three products are formed: O2NCF2CCl2NO2 and equimolecular amounts of CINO and of O2NCF2C(O)Cl. The rate of consumption of the reactants is independent of the total pressure, the reaction products, and added inert gases and can be represented by a second-order reaction: However, the distribution of the products is influenced by the pressure of the present gases, which favor the formation of the dinitro-compound in a specific way. The effect of CF2CCl2 is the greatest. In the absence of added gases, the ratio of O2NCF2CCl2NO2 to that of O2NCF2C(O)Cl is proportional to (CF2CCl2 + γP products). The experimental results can be explaned by the following mechanism: P and X represent the products and the added gases:   相似文献   

10.
The kinetics of the thermal bromination reaction have been studied in the range of 261°–391°C. The observed rate law is compatible with initiation by the step for which we obtain where Θ = 2.303RT cal/mol. Using the above value of E6, we have This result disagrees with values of D(C6F5-I) obtained in other ways and we conclude that reaction (3) probably does not involve initiation by reaction (6). Instead, initiation may involve an addition of Br to the ring in C6F5I followed by decomposition of the adduct to give C6F5Br. If correct, this implies that the Arrhenius parameters above refer to the addition reaction rather than to reaction (6).  相似文献   

11.
The kinetics of the title reactions have been studied using the discharge-flow mass spectrometic method at 296 K and 1 torr of helium. The rate constant obtained for the forward reaction Br+IBr→I+Br2 (1), using three different experimental approaches (kinetics of Br consumption in excess of IBr, IBr consumption in excess of Br, and I formation), is: k1=(2.7±0.4)×10−11 cm3 molecule−1s−1. The rate constant of the reverse reaction: I+Br2→Br+IBr (−1) has been obtained from the Br2 consumption rate (with an excess of I atoms) and the IBr formation rate: k−1=(1.65±0.2)×10−13 cm3molecule−1s−1. The equilibrium constant for the reactions (1,−1), resulting from these direct determinations of k1 and k−1 and, also, from the measurements of the equilibrium concentrations of Br, IBr, I, and Br2, is: K1=k1/k−1=161.2±19.7. These data have been used to determine the enthalpy of reaction (1), ΔH298°=−(3.6±0.1) kcal mol−1 and the heat of formation of the IBr molecule, ΔHf,298°(IBr)=(9.8±0.1) kcal mol−1. © 1998 John Wiley & sons, Inc. Int J Chem Kinet 30: 933–940, 1998  相似文献   

12.
Disproportionation/combination rate constant ratios, kd/kc, for the reactive collision between CF3CH2CHX + CF3 radicals and between CF3CH2CHX + CF3CH2CHX radicals have been measured for X = CF3. The kd/kc = 0.066 ± 0.013 when H is transferred to the CF3 radical and 0.125 ± 0.025 for H transfer to the CF3CH2CHCF3 radical. Comparison of these results with previous work shows that X = CF3 increases the kc/kc' s relative to X = Cl or H. The effect of the CF3 substituent on the disproportionation rate is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Disproportionation/combination rate constant ratios, kd /kc, have been measured for the collision between CF3CH2CH2 and CF3 radicals to be 0.022 ± 0.002 and for CF3CH2CH2 and CF3CH2CH2 radicals to be 0.100 ± 0.002. Comparison to previous work from this laboratory for the reaction of CF3CH2CHCl with CF3 radicals shows that substitution of Cl for H increases the kd /kc by about 50%; however, for the auto disproportionation-combination of CF3CH2CH2 radicals the chlorine substituent decreases the observed rate constant ratio by a factor of two. The chlorine substituent effect on the observed kd /kc ratios is compared to predictions from molecular orbital calculations. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
The title reaction has been investigated in the temperature range of 490-573 K. Initial reactant pressures were varied in the range of 0.2-5.2 torr (I2) and 2-20 torr (C6H5SiH3). The rate of iodine consumption, monitored spectrophotometrically, was found to obey both by initial rate and integrated equation fitting procedures. The effect of added initial HI conformed to this expression. The data are consistent with a conventional I-atom propagated chain reaction, and for the step the rate constant is given by From this is derived the bond dissociation energy value C6H5SiH2? H = 374 kJ/mol(88 kcal/mol). A comparison with other Si? H dissociation energy values indicates that the “silabenzyl” stabilization energy is small, ≈7 kJ/mol.  相似文献   

15.
Variational transition-state theory rate constants with multidimensional tunneling contributions using the small curvature method have been calculated for the CF3CH2CH3 (HFC-263fb) + OH reaction over a temperature range from 200 to 373 K. The mPW1B95-41.0 hybrid functional, parametrized by Albu and Swaminathan to generate theoretical rate constants nearly identical to the experimental values for the CH3F + OH reaction, has been used in conjunction with the 6-31+G** basis set to explore the potential energy surface of the title reaction. The good agreement found between theoretical predictions and the experimental data available suggests that the present approach is an excellent option to obtain high-quality results at low computational cost for direct dynamics studies of hydrogen abstraction reactions from complex hydrofluorocarbons. The reliability of the structure activity relationship used to estimate rate constant values for OH reactions with hydrofluorocarbons is also discussed in detail.  相似文献   

16.
FTIR-smog chamber techniques were used to study the products of the Cl atom and OH radical initiated oxidation of CF3CH=CH2 in 700 Torr of N2/O2, diluent at 296 K. The Cl atom initiated oxidation of CF3CH=CH2 in 700 Torr of air in the absence of NOx gives CF3C(O)CH2Cl and CF3CHO in yields of 70+/-5% and 6.2+/-0.5%, respectively. Reaction with Cl atoms proceeds via addition to the >C=C< double bond (74+/-4% to the terminal and 26+/-4% to the central carbon atom) and leads to the formation of CF3CH(O)CH2Cl and CF3CHClCH2O radicals. Reaction with O2 and decomposition via C-C bond scission are competing loss mechanisms for CF3CH(O)CH2Cl radicals, kO2/kdiss=(3.8+/-1.8)x10(-18) cm3 molecule-1. The atmospheric fate of CF3CHClCH2O radicals is reaction with O2 to give CF3CHClCHO. The OH radical initiated oxidation of CxF2x+1CH=CH2 (x=1 and 4) in 700 Torr of air in the presence of NOx gives CxF2x+1CHO in a yield of 88+/-9%. Reaction with OH radicals proceeds via addition to the >C=C< double bond leading to the formation of CxF2x+1C(O)HCH2OH and CxF2x+1CHOHCH2O radicals. Decomposition via C-C bond scission is the sole fate of CxF2x+1CH(O)CH2OH and CxF2x+1CH(OH)CH2O radicals. As part of this work a rate constant of k(Cl+CF3C(O)CH2Cl)=(5.63+/-0.66)x10(-14) cm3 molecule-1 s-1 was determined. The results are discussed with respect to previous literature data and the possibility that the atmospheric oxidation of CxF2x+1CH=CH2 contributes to the observed burden of perfluorocarboxylic acids, CxF2x+1COOH, in remote locations.  相似文献   

17.
The kinetics of the gas-phase reaction of 2,2,2-trifluoroethyl iodide with hydrogen iodide has been studied over the temperature range of 525°K to 602°K and a tenfold variation in the ratio of CF3CH2I/HI. The experimental results are in good agreement with the expected free radical-mechanism: An analysis of the kinetic data yield: where θ =2.303RT in kcal/mol. If these results are combined with the assumption that E2 = 0 ± 1 kcal/mol, then one obtains DH (CF3CH2? I) = 56.3 kcal/mol. This result may be compared with DH(CH3CH2? I) = 52.9 kcal/mol and suggests that substitution of three fluorines for hydrogen in the beta position strengthens the C? I bond slightly.  相似文献   

18.
The title reaction has been investigated in the temperature range of 403–446 K. Monoiodogermane and di-iodogermane together with hydrogen iodide were the main products, although at high conversions at least one other product was formed. GeH3I is clearly the primary product. Initial rates were found to obey the rate law over a wide range of initial iodine and monogermane pressures. Secondary reactions (of GeH3I with I2) affect the subsequent kinetics, although at sufficiently high initial reactant ratios ([GeH4]0/[I2]0 ≥ 100) an integrated rate equation fits the data with the same rate constants as the initial rate expression. The observed kinetics are consistent with an iodine atom abstraction chain mechanism, and for the step log k1 (dm3/mol·s) = (11.03 ± 0.13) – (52.3 ± 1.0 kJ/mol)/RT ln 10 has been deduced. From this the bond dissociation energy D(GeH3? H) = 346 ± 10 kJ/mol (82.5 kcal/mol) is obtained. The significance of this value, together with derived values for Ge–Ge and Ge–C bond strengths, is discussed.  相似文献   

19.
The title reaction has been investigated in the temperature range 667–715K. The only reaction products were trifluorosilyl iodide and hydrogen iodide. The rate law was obeyed over a wide range of iodine and trifluorosilane pressures. This expression is consistent with an iodine atom abstraction mechanism and for the step log k1(dm3/mol·sec) = (11.54 ± 0.17) ? (130.5 ± 2.2 kJ/mol)/RT In 10 has been deduced. From this the bond dissociation energy D(F3Si? H) = (419 ± 5) kJ/mol (100.1 kcal/mol) is obtained. The kinetic andthermochemical implications of this value are discussed.  相似文献   

20.
The title reaction has been investigated in the temperature range of 494–545 K. During the early stages of reaction the only observed products were silyl iodide and hydrogen iodide. Initial rates were found to obey the rate law over a wide range of initial iodine and monosilane pressures. Secondary reactions, most probably of SiH3I with I2, became more important as the reaction progressed. However, provided [SiH4]0/[I2]0 > 20, these secondary processes had a negligible effect on the kinetics, and an integrated rate expression could be used. These kinetics are consistent with an iodine atom abstraction chain mechanism, and for the step has been deduced. From this the bond dissociation energy D(SiH3? H) = 378 ± 5 kJ/mol (90 kcal/mol) is obtained. The kinetic and thermochemical implications of this value, especially to the pyrolysis of monosilane, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号