首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions Br + NO2 + M → BrNO2 + M (1) and I + NO2 + M → INO2 + M (2) have been studied at low pressure (0.6-2.2 torr) at room temperature and with helium as the third body by the discharge-flow technique with EPR and mass spectrometric analysis of the species. The following third order rate constants were found k1(0) = (3.7 ± 0.7) × 10?31 and k2(0) = (0.95 ± 0.35) × 10?31 (units are cm6 molecule?2 s?1). The secondary reactions X + XNO2X2 + NO2 (X = Br, I) have been studied by mass spectrometry and their rate constants have been estimated from product analysis and computer modeling.  相似文献   

2.
The rate constant k4 has been measured at 268°, 298°, and 334° K for the reaction CH2O + 2OH → CO + 2H2O relative to that for OH + OH (k2) by competition experiments in a discharge flow tube using mass-spectrometric analysis. Based on k2 = 2.24 × 10?12cm3/molec·sec at 298°K and E2 = 4 kJ/mol, k4 = (6.5 ± 1.5) × 10?12cm3/molec·sec at 298°K and E4 = (6 ± 2)kJ/mol.  相似文献   

3.
The equilibrium I2(g) + 2NO(g) = 2INO(g) has been studied at room temperature by ultraviolet absorption spectroscopy. The equilibrium constant has been measured as Kp = (2.7 ± 0.3) × 10?6 atm?1 at 298 K. Third-law calculations lead to ΔH°f,298 (INO) = 120.0 ± 0.3 kJ/mol. The relative absorption spectrum of INO has been measured between 225 and 300 nm. Quantitative measurements gave ?(λmax = 238 nm) = (1.79 ± 0.5) × 104 L/mol·cm and ?(410 nm) = 234.7 ± 21 L/mol·cm.  相似文献   

4.
The rate constant for the reaction Cl + CHClO → HCl + CClO was determined from relative decay rates of CHClO and CH3Cl inthe photolysis of mixtures containing Cl2 (~1 torr), CH3Cl (~1 torr), and O2 (~0.1 torr) in 700 torr N2. In such mixtures CHClO was generated in situ as a principal product prior to complete consumption of O2. The value of k(Cl + CHClO)/k(Cl + CH3Cl) = 1.6 ± 0.2(3σ) combined with the literature value of k(Cl + CH3Cl) = 4.9 × 10?13 cm3/molecule sec gives k(Cl + CHClO) = 7.8 × 10?13 cm3/molecule sec at 298 ± 2 K, in excellent agreement with a previous value of (7.9 ± 1.5) × 10?13 cm3/molecule sec determined by Sanhueza and Heicklen [J. Phys. Chem., 79 , 7 (1975)]. Thus this reaction is approximately 100 times slower than the corresponding reactions of aldehydes and alkanes with comparable C? H bond energies (≤95 kcal/mol).  相似文献   

5.
Pd-catalyzed double carbomethoxylation of the Diels-Alder adduct of cyclo-pentadiene and maleic anhydride yielded the methyl norbornane-2,3-endo-5, 6-exo-tetracarboxylate ( 4 ) which was transformed in three steps into 2,3,5,6-tetramethyl-idenenorbornane ( 1 ). The cycloaddition of tetracyanoethylene (TCNE) to 1 giving the corresponding monoadduct 7 was 364 times faster (toluene, 25°) than the addition of TCNE to 7 yielding the bis-adduct 9 . Similar reactivity trends were observed for the additions of TCNE to the less reactive 2,3,5,6-tetramethylidene-7-oxanorbornane ( 2 ). The following second order rate constants (toluene, 25°) and activation parameters were obtained for: 1 + TCNE → 7 : k1 = (255 + 5) 10?4 mol?1 · s?1, ΔH≠ = (12.2 ± 0.5) kcal/mol, ΔS≠ = (?24.8 ± 1.6) eu.; 7 + TCNE → 9 , k2 = (0.7 ± 0.02) 10?4 mol?1 · s?1, ΔH≠ = (14.1 ± 1.0) kcal/mol, ΔS≠ = ( ?30 ± 3.5) eu.; 2 + TCNE → 8 : k1 = (1.5 ± 0.03) 10?4 mol?1 · s?1, ΔH≠ = (14.8 ± 0.7) kcal/mol, ΔS≠ = (?26.4 ± 2.3) eu.; 8 + TCNE → 10 ; k2 = (0.004 ± 0.0002) 10?4 mol?1 · s?1, ΔH≠ = (17 ± 1.5) kcal/mol, ΔS≠ = (?30 ± 4) eu. The possible origins of the relatively large rate ratios k1/k2 are discussed briefly.  相似文献   

6.
The rate coefficients of the reactions of CN and NCO radicals with O2 and NO2 at 296 K: (1) CN + O2 → products; (2) CN + NO2 → products; (3) NCO + O2 → products and (4) NCO + NO2 → products have been measured with the laser photolysis-laser induced fluorescence technique. We obtained k1 = (2.1 ± 0.3) × 10?11 and k2 = (7.2 ± 1.0) × 10?11 cm3 molecule?t s?1 which agree well with published results. As no reaction was observed between NCO and O2 at 297 K, an upper limit of k3 < 4 × 10?17 cm3 molecule?1 S?1 was estimated. The reaction of NCO with NO2 has not been investigated previously. We measured k4 = (2.2 ± 0.3) × 10?11 cm3 molecule?1 s?1 at 296 K.  相似文献   

7.
The kinetics of the reactions of hydroxy radicals with cyclopropane and cyclobutane has been investigated in the temperature range of 298–492 K with laser flash photolysis/resonance fluorescence technique. The temperature dependence of the rate constants is given by k1 = (1.17 ± 0.15) × 10?16 T3/2 exp[?(1037 ± 87) kcal mol?1/RT] cm3 molecule?1 s1 and k2 = (5.06 ± 0.57) × 10?16 T3/2 exp[?(228 ± 78) kcal mol?1/RT] cm3 molecule?1 s?1 for the reactions OH + cyclopropane → products (1) and OH + cyclobutane → products (2), respectively. Kinetic data available for OH + cycloalkane reactions were analyzed in terms of structure-reactivity correlations involving kinetic and energetic parameters.  相似文献   

8.
Reactions of ozone with simple olefins have been studied between 6 and 800 mtorr total pressure in a 220-m3 reactor. Rate constants for the removal of ozone by an excess of olefin in the presence of 150 mtorr oxygen were determined over the temperature range 280 to 360° K by continuous optical absorption measurements at 2537 Å. The technique was tested by measuring the rate constants k1 and k2 of the reactions (1) NO + O3 → NO2 + O2 and (2) NO2 + O3 rarr; NO3 + O2 which are known from the literature. The results for NO, NO2, C2H4, C3H6, 2-butene (mixture of the isomers), 1,3→butadiene, isobutene, and 1,1 -difluoro-ethylene are 1.7 × 10?1 4 (290°K), 3.24 × 10?17 (289°K), 1.2 × 10?1 4 exp (–4.95 ± 0.20/RT), 1.1 × 10?1 4 exp (–3.91 ± 0.20/RT), 0.94 × 10?1 4 exp ( –2.28 ± 0.15/RT), 5.45 ± 10?1 4 exp ( –5.33 ± 0.20/RT), 1.8 ×10?17 (283°K), and 8 × 10?20 cm3/molecule ·s(290°K). Productformation from the ozone–propylene reaction was studied by a mass spectrometric technique. The stoichiometry of the reaction is near unity in the presence of molecular oxygen.  相似文献   

9.
The reaction chemistry of C2N2? Ar and C2N2? NO? Ar mixtures has been investigated behind incident shock waves. Progress of the reaction was monitored by observing the cyano radical (CN) in absorption at 388.3 nm. A quantitative spectroscopic model was used to determine concentration histories of CN. From initial slopes of CN concentration during cyanogen pyrolysis, the rate constant for C2N2 + M → 2CN + M (1) was determined to be k1 = (4.11 ± 1.8) × 1016 exp(?47,070 ± 1400/T) cm3/mol · s. A reaction sequence for the C2N2? NO system was developed, and CN profiles were computed. By comparison with experimental CN profiles the rate constant for the reaction CN + NO → NCO + N (3) was determined to be k3 = 10(14.0 ± 0.3) exp(?21,190 ± 1500/T) cm3/mol · s. In addition, the rate of the four-centered reaction CN + NO → N2 + CO (2) was estimated to be approximately three orders of magnitude below collision frequency.  相似文献   

10.
A continuum-absorption spectrum between 200 and 240 nm is assigned to the acetyl radical. Kinetic measurements using molecular modulation spectroscopy show for the reaction CH3 + CO (+M) → CH3CO + M the rate constants are (1.8 ± 0.2) × 10?18 cm3 molecule?1 s?1 at 100 Torr and (6 ± 1) × 10?18 at 750 Torr. The rate constant for acetyl combination 2CH3CO → (CH3CO)2 is (3.0 ± 10) × 10?11 at 25°C.  相似文献   

11.
Measurements of the rate coefficient of the reaction (O3P) + NO2 → O2 + NO have been made at 296°K and 240°K, using the technique of NO2* chemiluminescent decay. Values of 9.3 × 10?12 cm3 molec?1 sec?1 at 296°K and 10.5 × 10?12 cm3 molec?1 sec?1 at 240°K were obtained, in excellent agreement with the recent results of Davis, Herron, and Huie [1]. The earlier lower values may have resulted from loss of NO2 on surfaces.  相似文献   

12.
Thermodynamic properties (ΔH°f(298), S°(298) and Cp(T) from 300 to 1500 K) for reactants, adducts, transition states, and products in reactions of CH3 and C2H5 with Cl2 are calculated using CBSQ//MP2/6‐311G(d,p). Molecular structures and vibration frequencies are determined at the MP2/6‐311G(d,p), with single‐point calculations for energy at QCISD(T)/6‐311 + G(d,p), MP4(SDQ)/CbsB4, and MP2/CBSB3 levels of calculation with scaled vibration frequencies. Contributions of rotational frequencies for S°(298) and Cp(T)'s are calculated based on rotational barrier heights and moments of inertia using the method of Pitzer and Gwinn [1]. Thermodynamic parameters, ΔH°f(298), S°(298), and CP(T), are evaluated for C1 and C2 chlorocarbon molecules and radicals. These thermodynamic properties are used in evaluation and comparison of Cl2 + R· → Cl· + RCl (defined forward direction) reaction rate constants from the kinetics literature for comparison with the calculations. Data from some 20 reactions in the literature show linearity on a plot of Eafwd vs. ΔHrxn,fwd, yielding a slope of (0.38 ± 0.04) and intercept of (10.12 ± 0.81) kcal/mole. A correlation of average Arrhenius preexponential factor for Cl· + RCl → Cl2 + R· (reverse rxn) of (4.44 ± 1.58) × 1013 cm3/mol‐sec on a per‐chlorine basis is obtained with EaRev = (0.64 ± 0.04) × ΔHrxn,Rev + (9.72 ± 0.83) kcal/mole, where EaRev is 0.0 if ΔHrxn,Rev is more than 15.2 kcal/mole exothermic. Kinetic evaluations of literature data are also performed for classes of reactions. Eafwd = (0.39 ± 0.11) × ΔHrxn,fwd + (10.49 ± 2.21) kcal/mole and average Afwd = (5.89 ± 2.48) × 1012 cm3/mole‐sec for hydrocarbons: Eafwd = (0.40 ± 0.07) × ΔHrxn,fwd + (10.32 ± 1.31) kcal/mole and average Afwd = (6.89 ± 2.15) × 1011 cm3/mole‐sec for C1 chlorocarbons: Eafwd = (0.33 ± 0.08) × ΔHrxn,fwd + (9.46 ± 1.35) kcal/mole and average Afwd = (4.64 ± 2.10) × 1011 cm3/mole‐sec for C2 chlorocarbons. Calculation results on the methyl and ethyl reactions with Cl2 show agreement with the experimental data after an adjustment of +2.3 kcal/mole is made in the calculated negative Ea's. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 548–565, 2000  相似文献   

13.
A steady-state system involving the photolysis of NO2 in an excess of I2 as a source of IO radicals has been used to study the reaction IO + DMS in 760 Torr N2 at 296 K. IO radicals were found to react rapidly with DMS, one molecule of DMSO being produced for each molecule of DMS consumed. Numerical analysis of the experimental results yielded a rate constant of (3.0 ± 1.5) × 10?11 cm3 s?1 for the reaction IO + DMS → DMSO + I.  相似文献   

14.
A fast discharge flow apparatus equipped for EPR detection of radicals has been used to investigate the reaction O + HBr → OH + Br. At 295°K, measurements showed that more than 97% of all OH produced in this reaction was formed initially in its first vibrationally excited state. Rate constants for physical deactivation of OH(v = 1) by O(3P), Br(2P3/2), H2O, and HBr were measured as (1.45 ± 0.25) × 10?10, (6.4 ± 2.4) × 10?11, (1.35 ± 0.50) × 10?11, and < 10?12 cm3/molec·sec, respectively.  相似文献   

15.
The reaction of atomic hydrogen with O2(1Δg) has been investigated as a function of temperature, using a fast discharge-flow apparatus equipped for EPR detection of free radical species. The rate constant for the overall reaction was measured as (1.46 ± 0.49) × 10?11 exp(-4000 ± 200 cal/mol/RT) cm3/s. Evidence is presented which suggests that the reaction occurs principally via abstraction, H + O2(1Δg) → OH + O, rather than via physical quenching, H + O2(1Δg) → H + O2(X3Σg?).  相似文献   

16.
The kinetics and equilibrium of the gas-phase reaction of CH3CF2Br with I2 were studied spectrophotometrically from 581 to 662°K and determined to be consistent with the following mechanism: A least squares analysis of the kinetic data taken in the initial stages of reaction resulted in log k1 (M?1 · sec?1) = (11.0 ± 0.3) - (27.7 ± 0.8)/θ where θ = 2.303 RT kcal/mol. The error represents one standard deviation. The equilibrium data were subjected to a “third-law” analysis using entropies and heat capacities estimated from group additivity to derive ΔHr° (623°K) = 10.3 ± 0.2 kcal/mol and ΔHrr (298°K) = 10.2 ± 0.2 kcal/mol. The enthalpy change at 298°K was combined with relevant bond dissociation energies to yield DH°(CH3CF2 - Br) = 68.6 ± 1 kcal/mol which is in excellent agreement with the kinetic data assuming that E2 = 0 ± 1 kcal/mol, namely; DH°(CH3CF2 - Br) = 68.6 ± 1.3 kcal/mol. These data also lead to ΔHf°(CH3CF2Br, g, 298°K) = -119.7 ± 1.5 kcal/mol.  相似文献   

17.
Flash photolysis of CH3CHO and H2CO in the presence of NO has been investigated by the intracavity laser spectroscopy technique. The decay of HNO formed by the reaction HCO + NO → HNO + CO was studied at NO pressures of 6.8–380 torr. At low NO pressure HNO was found to decay by the reaction HNO + HNO → N2O + H2O. The rate constant of this reaction was determined to be k1 = (1.5 ± 0.8) × 10?15 cm3/s. At high NO pressure the reaction HNO + NO → products was more important, and its rate constant was measured to be k2 = (5 ± 1.5) × 10?19 cm3/s. NO2 was detected as one of the products of this reaction. Alternative mechanisms for this reaction are discussed.  相似文献   

18.
The kinetic and mechanism of the reaction Cl + HO2 → products (1) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expression for the total rate constant was obtained either from the kinetics of HO2 consumption in excess of Cl atoms or from the kinetics of Cl in excess of HO2: k1 = (3.8 ± 1.2) × 10?11 exp[(40 ± 90)/T] cm3 molecule?1 s?1, where uncertainties are 95% confidence limits. The temperature‐independent value of k1 = (4.4 ± 0.6) × 10?11 cm3 molecule?1 s?1 at T = 230–360 K, which can be recommended from this study, agrees well with most recent studies and current recommendations. Both OH and ClO were detected as the products of reaction (1) and the rate constant for the channel forming these species, Cl + HO2 → OH + ClO (1b), has been determined: k1b = (8.6 ± 3.2) × 10?11 exp[?(660 ± 100)/T] cm3 molecule?1 s?1 (with k1b = (9.4 ± 1.9) × 10?12 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 317–327, 2001  相似文献   

19.
Pyrolytic decay of carbon diselenide was monitored by ultraviolet absorption spectroscopy in reflected shock waves in the temperature range of 1600–2600°K. The temperature dependence of the absorption coefficient of CSe2 at 2308 Å was determined and was used to provide kinetic information along with a deconvolution procedure which accounted for and removed systematic distortions of the fast time-resolved absorbance profile. For temperatures of 1600–2600°K and argon densities of 1.5–7.0 × 10?5 mol/cm3 dilute (1.0–9.0 × 10?9 mol/cm3) CSe2 pyrolyzed with measured first-order decay rates in the range of log10 k1 (sec?1) = 3.0?5.7; at midrange (2100°K and 4.3 × 10?5 mol/cm3 in Ar) k1 ≈ 3 × 104 sec?1. The decay probably occurs via a unimolecular low-pressure process, first order in both CSe2 and Ar, for which k2 ± 109 cm3/mol·sec at 2100°K. The deconvoluted data yield Arrhenius activation energies of 53.2 kcal/mol under second-order treatment, but the activation energy is less reliable than the general magnitude of the rate constant. A comparison of CSe2 with other molecules which are isoelectronic in their valence shells (CO2, CS2, OCS, and N2O) is made.  相似文献   

20.
The rate constant for the unusually rapid HD exchange reaction of D2 with HBF2 : D2(g) + HBF2(g) → DBF2(g) + HD(g) has been measured (k2(298K) = (7.42 ± 2.0) × 10?23 cm3/molecule s). The activation energy for this reaction has been estimated to be 17.8 ± 1.2 kcal/mole. The mechanism probably involves a multicenter orbital interaction between D2 and HBF2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号