首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
刘超群  乔秀丽  迟彩霞 《化学通报》2022,85(11):1290-1296
Fe2O3锂离子电池负极材料因其具有的高能量密度而备受关注。但Fe2O3电极材料存在的如低导电性、充/放电过程中体积改变导致的循环稳定性差等问题限制其实际应用。介绍了高比表面积、结构稳定以及储锂动力学等因素对锂离子电池负极材料电化学性能的重要影响,综述电极活性材料纳米化、形貌控制和杂原子掺杂对Fe2O3负极材料电化学性能改善的相关研究进展,最后对Fe2O3电极材料的发展前景进行了展望。  相似文献   

2.
王照民  易政  钟鸣  程勇  王立民 《应用化学》2018,35(7):745-755
Sb基材料作为一类合金机制的锂离子电池负极材料,因具有比容量高、安全性好等优点受到广泛关注。 然而,由于Sb基负极材料在充放电过程中的体积效应和本身导电性较差等问题导致的循环性能不理想,制约了其作为锂离子电池负极材料的商业化应用。 本文综述了近年来在锂离子电池Sb基各类负极材料方面的研究进展,重点介绍了它们的反应机理、合成方法及电化学性能,并对Sb基负极材料的发展方向进行了展望。  相似文献   

3.
褚道葆  李建  袁希梅  李自龙  魏旭  万勇 《化学进展》2012,24(8):1466-1476
发展高安全性、高能量、低成本、长寿命锂离子电池是当前动力电池应用面临的巨大挑战。电池的性能主要取决于正负极电极材料的性能。Sn基合金负极具有高能量和安全特性,是一种很有产业化前景的锂离子电池负极材料。本文综述了Sn基合金电极作为锂离子电池负极的最新研究进展,对Sn基合金负极的不同制备方法进行了总结,重点介绍了锡基合金负极材料在电化学性能方面所存在的问题及其原因,包括锡基活性物质的损失、SEI膜和氧化膜的形成、纳米粒子的团聚和锂离子嵌入过程中死锂的产生等影响合金充放电性能的因素,最后展望了以提高Sn基合金负极电化学性能为目的的研究趋势。  相似文献   

4.
硅基材料由于其高电化学容量是一种非常有发展前途的锂离子电池负极材料,但其在充放电过程中体积变化大、循环寿命差、首次库仑效率低等是阻碍其商业化的主要问题.本文综述了硅在脱嵌锂时晶体结构及表/界面的变化,以及改善其电化学性能方面的研究进展,并阐述其作为锂离子电池负极材料的研究前景.  相似文献   

5.
牛津  张苏  牛越  宋怀河  陈晓红  周继升 《化学进展》2015,27(9):1275-1290
硅是目前已知比容量(4200 mAh ·g-1)最高的锂离子电池负极材料,但由于其巨大的体积效应(> 300%),硅电极材料在充放电过程中会粉化而从集流体上剥落,使得活性物质与活性物质、活性物质与集流体之间失去电接触,同时不断形成新的固相电解质层(SEI),最终导致电化学性能的恶化。本文介绍了硅作为锂离子电池负极材料的储能及容量衰减机理,总结了通过硅材料的选择和结构设计来解决充放电过程中巨大体积效应的相关工作,并讨论了一些具有代表性的硅基复合材料的制备方法、电化学性能和相应机理,重点介绍了硅炭复合材料。另外,介绍了一些电极的处理方法和其提高硅基负极材料电化学性能的可能机理。最后,对硅基负极材料存在的问题进行了分析,并展望了其研究前景。  相似文献   

6.
采用无表面活性剂回流法制备了蜂窝状TiO2/石墨烯(GNs)复合材料.扫描电子显微镜(SEM)及透射电子显微镜(TEM)表征结果表明,TiO2颗粒约5~10 nm,均匀地分散在石墨烯的表面.锂电池测试显示,1C充电容量稳定在240.1 mAh.g-1;30C充电容量为169.5 mAh.g-1;当电流调回1C时,其充电容量仍可完全恢复(241.7 mAh.g-1);10C 300周期循环电极容量保持率为89.8%.  相似文献   

7.
王亚丽  于晶  李榕  甄强 《化学进展》2012,24(11):2132
SnO2是一种重要的宽禁带半导体材料,由于具有较高的理论容量,将其作为锂离子电池的负极材料有广阔的应用前景。材料的微观形貌对其物理化学性能有重要的影响作用,因此近年来大量的研究工作围绕SnO2的形貌调控合成开展。本文综述了作为锂离子电池负极材料SnO2的各种形貌的调控合成,如颗粒状、片状、一维、空壳、分级结构等,以及其形貌对电化学性能的影响,分析总结了各种形貌对其电化学性能的影响规律以及形貌调控的发展趋势。  相似文献   

8.
锂离子电池硅纳米线负极材料研究   总被引:2,自引:0,他引:2  
采用涂膜法和直接生长成膜法分别制备两种硅纳米线电极.XRD、SEM和充放电曲线表征、观察和测定材料嵌锂状态过程的结构、形貌及电化学性能.与涂膜法相比,直接生长成膜法制备的硅纳米线电极具有较高的比容量、良好的循环寿命及较好的倍率性能;直接生长成膜法制备的硅纳米线电极,其嵌锂过程硅由晶态逐渐转变为非晶态,且其纳米线直径逐渐增大,但线状结构仍保持完好,进而防止了电极粉化和脱落.  相似文献   

9.
改性石墨用于锂离子电池负极   总被引:2,自引:0,他引:2  
石墨可用于锂离子电池负极材料,其改性方面的研究主要有:石墨的还原、氧化、表面包膜以及物理法处理。这些方法可以改变石墨的电子状态及表面结构,能够提高石墨的性能。本文介绍了改性石墨用于锂离子电池负极的研究概况。  相似文献   

10.
郑洪河  石磊  曲群婷  徐仲榆 《化学通报》2006,69(10):741-748
综述了锂离子电池纳米负极材料研究的最新进展,根据材料的化学组成把锂离子电池纳米级负极材料分为金属基纳米负极材料、非金属基纳米负极材料、金属-非金属复合纳米负极材料、纳米氧化物负极材料和其它纳米负极材料。论述了各类材料的优势和存在的问题,探讨了这些材料的主要制备方法与其结构、形貌和电化学性能之间的关系,展望了纳米负极材料用于锂离子电池的前景。  相似文献   

11.
采用固相法合成了纯六方相的TiS2粉体. X射线衍射(XRD)、扫描电子显微镜(SEM)结果表明该材料具有特征层状结构, 其颗粒大小在10-20 μm之间. 作为锂离子电池负极材料, TiS2在3.00 V(vs. Li+/Li)以下有3个明显的放电平台, 首次可逆容量达668 mAh·g-1, 在第一个放电电压范围(3.00-1.40 V)内具有优异的循环可逆性. 深度放电时由于Li2S的生成和材料颗粒严重破碎, 在低于0.50 V时材料的循环性能不佳. 通过减小材料颗粒度和提高导电剂含量, TiS2的电化学性能得到显著改善.  相似文献   

12.
以葡萄糖作为碳源,通过简单的水热反应获得菱形碳包覆碳酸钴(CoCO3/C)复合材料,并研究了其作为锂离子电池负极材料的电化学性能.晶型和表面形貌通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)进行表征,用热重-差热分析法(TG-DTA)来测试CoCO3/C材料中碳的含量,用拉曼光谱分析无定型碳的存在. Barrett-Joyner-Halenda (BJH)则用来分析材料的孔径分布情况.实验表明,碳包覆不仅在CoCO3颗粒表面包覆了一层无定性碳,使得CoCO3材料在充放电过程中保持结构的稳定性,也形成了一些大约30 nm左右的介孔,这种孔的存在有助于电解液中离子的传输,从而提高材料的电化学性能.电极材料在0.90C(1.00C = 450 mAh•g-1)倍率下进行循环测试, 500次后的容量仍保持在539 mAh•g-1,显示出了较好的循环性能.当增加到3.00C倍率时CoCO3/C容量为130 mAh•g-1,再恢复到0.15C倍率时容量依然能够达到770 mAh•g-1,表现出了CoCO3/C具有良好的稳定性.  相似文献   

13.
锂离子电池负极材料非晶态MgSnO3的合成和性能研究   总被引:2,自引:0,他引:2  
锂离子电池金属氧化物负极材料越来越受到人们的重视.锡基氧化物贮锂材料具有能量密度较高、清洁无污染、原料来源广泛、价格便宜等优点,是金属氧化物类负极材料中极具发展潜力的一种负极材料.因此,近年来人们对这类材料开展了广泛的研究[1~6].  相似文献   

14.
A New Tin Graphite Intercalation Compound for Lithium Ion Batteries   总被引:1,自引:0,他引:1  
IntroductionLithium ion batteries have attracted a great interestbecause of their commercial applications in portable de-vices[1,2].Great efforts have been made to improve theenergy density of new anode materials.For example,Sn-based compounds,such as SnO…  相似文献   

15.
以氢氧化铁为四氧化三铁的前驱体,氧化石墨烯(GO)为还原石墨烯(rGO)的前驱体,以水合肼和二水合柠檬酸三钠为混合还原剂,采用水热法制备了还原石墨烯负载四氧化三铁纳米颗粒(Fe3O4/rGO)的复合材料。通过透射电子显微镜(TEM)、X-射线衍射(XRD)和热重分析(TGA)对产物的形貌、结构和组成进行了表征。以锂片为对电极进行了扣式电池的组装,通过恒电流充放电和循环伏安法对其电化学性能进行了测试。材料具有均一的形貌,rGO具有较高的还原程度且可以在充放电过程中缓冲Fe3O4纳米颗粒的体积变化,使得Fe3O4/rGO纳米复合物具有较好的电化学性能。  相似文献   

16.
应用电沉积技术制备了三维网状结构的Sn-Co合金负极材料, 采用XRD、SEM和电化学方法考察了该负极材料的结构和性能. XRD分析表明, 该三维网状结构的Sn-Co合金镀层为六方固溶体结构. 其电化学性能测试表明: 三维网状结构Sn-Co合金微晶电极的性能稳定, 其首次放电容量高达493.4 mAh•g−1, 首次库仑效率达80.03%, 而平面结构Sn-Co合金电极的首次库仑效率为63.47%. 经50周充放电循环后, 三维网状结构Sn-Co合金电极的放电容量为329.6 mAh•g−1, 放电容量保持率为66.8%;SEM分析表明: 三维网状Sn-Co合金电极表面是由大小不一、高低不同的“岛”紧密排列在一起;“岛”和多孔结构的存在, 缓冲了锂嵌入时体积的膨胀, 部分抑制了材料结构的变化, 减缓了电极容量的衰减, 改善了电极的循环性能.  相似文献   

17.
锂离子电池纳米电极材料研究   总被引:29,自引:1,他引:29  
尤金跨  杨勇 《电化学》1998,4(1):94-100
采用XRD,TEM方法对纳米相电极材料的结构,形貌进行表征,并用循环伏安法,恒流充放电法对电极材料的嵌锂电化学行为进行研究。结果表明,由于纳米材料的微结构特性使萁 具有优越的嵌锂特性;1)锂离子嵌入电极材料内部的深度小,过程短,具 较大的比表面,有利于采用较大的电流对该电池进行充放电;2)具有较大的嵌锂空间位置,有利于增加电极的锂嵌容量。  相似文献   

18.
锂离子电池纳米正极材料   总被引:4,自引:0,他引:4  
综述了锂离子电池纳米正极材料的研究进展,阐述了这种材料用于锂离子电池的优势和存在的问题,把纳米正极材料分为过渡金属嵌锂化合物、金属氧化物和金属硫化物和其它纳米正极材料。归纳了不同纳米正极材料的主要制备方法,探讨了材料的制备方法与其结构、形貌和电化学性能之间的关系,展望了纳米正极材料用于锂离子电池的未来前景。  相似文献   

19.
SnS2/polypyrrole (PPy) composites were successfully synthesized by PPy modification of SnS2 via a simple and effective solvothermal and chemical method. The microstructure, morphology, electrical conductivity, PPy content, and electrochemical properties of these materials were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), four‐point probe technique, thermogavimetry (TG), and constant‐current charge/discharge tests, respectively. The results demonstrate that PPy is tightly coated on the 3D flower‐like SnS2 and that the conductivity of SnS2 /PPy composites can be greatly improved by the PPy modification. The electrochemical results indicate that PPy is not involved in the electrode reaction, but it can dramatically improve the reversible capacity and cyclic performance. The recharge capacity retention after 30 cycles remained at 523 mAh/g, which is significantly higher than that of SnS2 without modification by PPy. The better cycling performance compared to SnS2 nanoparticles should be due to the 3D nano‐flower‐like SnS2 particles and the modification of SnS2 by PPy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号