首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The space \({\mathcal{D}_\Gamma^\prime}\) of distributions having their wavefront sets in a closed cone \({\Gamma}\) has become important in physics because of its role in the formulation of quantum field theory in curved spacetime. In this paper, the topological and bornological properties of \({\mathcal{D}_\Gamma^\prime}\) and its dual \({\mathcal{E}_\Lambda^\prime}\) are investigated. It is found that \({\mathcal{D}_\Gamma^\prime}\) is a nuclear, semi-reflexive and semi-Montel complete normal space of distributions. Its strong dual \({\mathcal{E}_\Lambda^\prime}\) is a nuclear, barrelled and (ultra)bornological normal space of distributions which, however, is not even sequentially complete. Concrete rules are given to determine whether a distribution belongs to \({\mathcal{D}_\Gamma^\prime}\) , whether a sequence converges in \({\mathcal{D}_\Gamma^\prime}\) and whether a set of distributions is bounded in \({\mathcal{D}_\Gamma^\prime}\) .  相似文献   

2.
The variation of two-photon absorption (TPA) coefficient \(\beta _{\mathrm{TPA}} (\omega )\) of Si excited at difference photon energy was investigated. The TPA coefficient was measured by using a picosecond pulsed laser with the wavelength could be tuned in a wide photon-energy range. An equivalent RC circuit model was adapted to derive the TPA coefficient \(\beta _{\mathrm{TPA}} (\omega )\) . The results showed that \(\beta _{\mathrm{TPA}} (\omega )\) varied from \(4.2 \times 10^{-4}\) to \(1.17 \times 10^{-3 }\)  cm/GW in the transparent wavelength region \(1.80<\lambda <1.36\,\upmu \) m of Si. The increasing tendency of \(\beta _{\mathrm{TPA}} (\omega )\) with the incident photon energy can be qualitatively interpreted as the photon energy increases from \(E_{\mathrm{ig}}/2\) to nearly \(E_{\mathrm{ig}}\) , the electrons excited from the valance band find an increasing availability of conduction band states. Comparing with the high-energy side transitions, the TPA coefficient in low-energy side is about 10 times too small. This can be attributed that the TPA transition in low-energy side is the process of photon-assisted electron transitions from valence to conduction band occurring between different points in k-space, while is direct transition in high-energy side.  相似文献   

3.
There are four types of two-Higgs doublet models under a discrete \(Z_2\) symmetry imposed to avoid tree-level flavor-changing neutral current, i.e. type-I, type-II, type-X, and type-Y models. We investigate the possibility to discriminate the four models in the light of the flavor physics data, including \(B_s\) \(\bar{B}_s\) mixing, \(B_{s,d} \rightarrow \mu ^+ \mu ^-\) , \(B\rightarrow \tau \nu \) and \(\bar{B} \rightarrow X_s \gamma \) decays, the recent LHC Higgs data, the direct search for charged Higgs at LEP, and the constraints from perturbative unitarity and vacuum stability. After deriving the combined constraints on the Yukawa interaction parameters, we have shown that the correlation between the mass eigenstate rate asymmetry \(A_{\Delta \Gamma }\) of \(B_{s} \rightarrow \mu ^+ \mu ^-\) and the ratio \(R=\mathcal{B}(B_{s} \rightarrow \mu ^+ \mu ^-)_\mathrm{exp}/ \mathcal{B}(B_{s} \rightarrow \mu ^+ \mu ^-)_\mathrm{SM}\) could be a sensitive probe to discriminate the four models with future precise measurements of the observables in the \(B_{s} \rightarrow \mu ^+ \mu ^-\) decay at LHCb.  相似文献   

4.
We study the phenomenon of “crowding” near the largest eigenvalue \(\lambda _\mathrm{max}\) of random \(N \times N\) matrices belonging to the Gaussian Unitary Ensemble of random matrix theory. We focus on two distinct quantities: (i) the density of states (DOS) near \(\lambda _\mathrm{max}\) , \(\rho _\mathrm{DOS}(r,N)\) , which is the average density of eigenvalues located at a distance \(r\) from \(\lambda _\mathrm{max}\) and (ii) the probability density function of the gap between the first two largest eigenvalues, \(p_\mathrm{GAP}(r,N)\) . In the edge scaling limit where \(r = \mathcal{O}(N^{-1/6})\) , which is described by a double scaling limit of a system of unconventional orthogonal polynomials, we show that \(\rho _\mathrm{DOS}(r,N)\) and \(p_\mathrm{GAP}(r,N)\) are characterized by scaling functions which can be expressed in terms of the solution of a Lax pair associated to the Painlevé XXXIV equation. This provides an alternative and simpler expression for the gap distribution, which was recently studied by Witte et al. in Nonlinearity 26:1799, 2013. Our expressions allow to obtain precise asymptotic behaviors of these scaling functions both for small and large arguments.  相似文献   

5.
We prove that Haag duality holds for cones in the toric code model. That is, for a cone ??, the algebra ${\mathcal{R}_{\Lambda}}$ of observables localized in ?? and the algebra ${\mathcal{R}_{\Lambda^c}}$ of observables localized in the complement ?? c generate each other??s commutant as von Neumann algebras. Moreover, we show that the distal split property holds: if ${\Lambda_1 \subset \Lambda_2}$ are two cones whose boundaries are well separated, there is a Type I factor ${\mathcal{N}}$ such that ${\mathcal{R}_{\Lambda_1} \subset \mathcal{N} \subset \mathcal{R}_{\Lambda_2}}$ . We demonstrate this by explicitly constructing ${\mathcal{N}}$ .  相似文献   

6.
The cosmological model consisting of a nonlinear magnetic field obeying the Lagrangian \(\mathcal {L}= \gamma F^{\alpha },\, F\) being the electromagnetic invariant, coupled to a Robertson-Walker geometry is tested with observational data of Type Ia Supernovae, Long Gamma-Ray Bursts and Hubble parameter measurements. The statistical analysis show that the inclusion of nonlinear electromagnetic matter is enough to produce the observed accelerated expansion, with not need of including a dark energy component. The electromagnetic matter with abundance \(\varOmega _B\) , gives as best fit from the combination of all observational data sets \(\varOmega _B=0.562^{+0.037}_{-0.038}\) for the scenario in which \(\alpha =-1, \varOmega _B=0.654^{+0.040}_{-0.040}\) for the scenario with \(\alpha =-1/4\) and \(\varOmega _B=0.683^{+0.039}_{-0.043}\) for the one with \(\alpha =-1/8\) . These results indicate that nonlinear electromagnetic matter could play the role of dark energy, with the theoretical advantage of being a mensurable field.  相似文献   

7.
We rely on a recent method for determining edge spectra and we use it to compute the Chern numbers for Hofstadter models on the honeycomb lattice having rational magnetic flux per unit cell. Based on the bulk-edge correspondence, the Chern number \(\sigma _\mathrm{H}\) is given as the winding number of an eigenvector of a \(2 \times 2\) transfer matrix, as a function of the quasi-momentum \(k\in (0,2\pi )\) . This method is computationally efficient (of order \(\mathcal {O}(n^4)\) in the resolution of the desired image). It also shows that for the honeycomb lattice the solution for \(\sigma _\mathrm{H}\) for flux \(p/q\) in the \(r\) -th gap conforms with the Diophantine equation \(r=\sigma _\mathrm{H}\cdot p+ s\cdot q\) , which determines \(\sigma _\mathrm{H}\mod q\) . A window such as \(\sigma _\mathrm{H}\in (-q/2,q/2)\) , or possibly shifted, provides a natural further condition for \(\sigma _\mathrm{H}\) , which however turns out not to be met. Based on extensive numerical calculations, we conjecture that the solution conforms with the relaxed condition \(\sigma _\mathrm{H}\in (-q,q)\) .  相似文献   

8.
We study quartic matrix models with partition function \({\mathcal{Z}[E, J] = \int dM}\) exp(trace \({(JM - EM^{2} - \frac{\lambda}{4} M^4)}\) ). The integral is over the space of Hermitean \({\mathcal{N} \times \mathcal{N}}\) -matrices, the external matrix E encodes the dynamics, \({\lambda > 0}\) is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing β-function. As the main application we prove that Euclidean \({\phi^4}\) -quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for \({\mathcal{N} \to \infty}\) the same spectrum as the Laplace operator in four dimensions. Using the theory of singular integral equations of Carleman type we compute (for \({\mathcal{N} \to \infty}\) and after renormalisation of \({E, \lambda}\) ) the free energy density (1/volume) log \({(\mathcal{Z}[E, J]/\mathcal{Z}[E, 0])}\) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which in subsequent work is verified for coupling constants \({\lambda \leq 0}\) .  相似文献   

9.
Magnetism in Cu-doped, Cu \(\rm _{Si}\) –V \(\rm _{Si}\) codoped, or Cu \(\rm _{Si}\) –V \(\rm _{C}\) codoped 6H-SiC are investigated using the first principle. The total density of states for the ferromagnetic Cu \(\rm _{Si}\) at doping concentration of 0.926 at. \(\%\) shows half-metallic behavior, which leads to the total magnetic moment of 2.84  \(\rm \mu _{B}\) per supercell. The total magnetic moment increases with increasing Cu content. The long-range ferromagnetic interaction between Cu atoms can be attributed to the C-mediated double exchange through the strong \(3d\) ? \(2p\) interaction between Cu and neighboring C ones. It is important to note that both V \(\rm _{Si}\) and V \(\rm _{C}\) play a negative role in ferromagnetic coupling between Cu ions. So, to obtain a larger magnetic moment from Cu-doped 6H–SiC, we should try to avoid the appearance of V \(\rm _{Si}\) and V \(\rm _{C}\) during the process of sample preparation. Our theoretical calculations give a valuable insight on how to get a large magnetic moment from Cu-doped 6H–SiC.  相似文献   

10.
We introduce a new type of algebra, the Courant–Dorfman algebra. These are to Courant algebroids what Lie–Rinehart algebras are to Lie algebroids, or Poisson algebras to Poisson manifolds. We work with arbitrary rings and modules, without any regularity, finiteness or non-degeneracy assumptions. To each Courant–Dorfman algebra ${(\mathcal{R}, \mathcal{E})}$ we associate a differential graded algebra ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ in a functorial way by means of explicit formulas. We describe two canonical filtrations on ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ , and derive an analogue of the Cartan relations for derivations of ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ ; we classify central extensions of ${\mathcal{E}}$ in terms of ${H^2(\mathcal{E}, \mathcal{R})}$ and study the canonical cocycle ${\Theta \in \mathcal{C}^3(\mathcal{E}, \mathcal{R})}$ whose class ${[\Theta]}$ obstructs re-scalings of the Courant–Dorfman structure. In the nondegenerate case, we also explicitly describe the Poisson bracket on ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ ; for Courant–Dorfman algebras associated to Courant algebroids over finite-dimensional smooth manifolds, we prove that the Poisson dg algebra ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ is isomorphic to the one constructed in Roytenberg (On the structure of graded symplectic supermanifolds and Courant algebroids. American Mathematical Society, Providence, 2002) using graded manifolds.  相似文献   

11.
12.
In this work we extend the results of the reunion probability of \(N\) one-dimensional random walkers to include mixed boundary conditions between their trajectories. The level of the mixture is controlled by a parameter \(c\) , which can be varied from \(c=0\) (independent walkers) to \(c\rightarrow \infty \) (vicious walkers). The expressions are derived by using Quantum Mechanics formalism (QMf) which allows us to map this problem into a Lieb-Liniger gas (LLg) of \(N\) one-dimensional particles. We use Bethe ansatz and Gaudin’s conjecture to obtain the normalized wave-functions and use this information to construct the propagator. As it is well-known, depending on the boundary conditions imposed at the endpoints of a line segment, the statistics of the maximum heights of the reunited trajectories have some connections with different ensembles in Random Matrix Theory. Here we seek to extend those results and consider four models: absorbing, periodic, reflecting, and mixed. In all four cases, the probability that the maximum height is less or equal than \(L\) takes the form \(F_N(L)=A_N\sum _{\varvec{k}\in \Omega _{\text {B}}} \mathrm{e}^{-\sum _{j=1}^Nk_j^2}\mathcal {V}_N(\varvec{k})\) , where \(A_N\) is a normalization constant, \(\mathcal {V}_N(\varvec{k})\) contains a deformed and weighted Vandermonde determinant, and \(\Omega _{\text {B}}\) is the solution set of quasi-momenta \(\varvec{k}\) obeying the Bethe equations for that particular boundary condition.  相似文献   

13.
We consider N Brownian particles moving on a line starting from initial positions \(\mathbf{{u}}\equiv \{u_1,u_2,\ldots u_N\}\) such that \(0 . Their motion gets stopped at time \(t_s\) when either two of them collide or when the particle closest to the origin hits the origin for the first time. For \(N=2\) , we study the probability distribution function \(p_1(m|\mathbf{{u}})\) and \(p_2(m|\mathbf{{u}})\) of the maximal distance travelled by the \(1^{\text {st}}\) and \(2^{\text {nd}}\) walker till \(t_s\) . For general N particles with identical diffusion constants \(D\) , we show that the probability distribution \(p_N(m|\mathbf{u})\) of the global maximum \(m_N\) , has a power law tail \(p_i(m|\mathbf{{u}}) \sim {N^2B_N\mathcal {F}_{N}(\mathbf{u})}/{m^{\nu _N}}\) with exponent \(\nu _N =N^2+1\) . We obtain explicit expressions of the function \(\mathcal {F}_{N}(\mathbf{u})\) and of the N dependent amplitude \(B_N\) which we also analyze for large N using techniques from random matrix theory. We verify our analytical results through direct numerical simulations.  相似文献   

14.
Assume ${\mathcal{A}}$ is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel’s deformation ${\mathcal{A}_J}$ of ${\mathcal{A}}$ . We construct an explicit isomorphism between the smooth crossed products ${V\ltimes\mathcal{A}_J}$ and ${V\ltimes\mathcal{A}}$ . When combined with the Elliott–Natsume–Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel’s and Kasprzak’s approaches to deformation.  相似文献   

15.
We investigate the level surfaces of geometric discord under some typical kinds of decoherence channels for a class of two-qubit states with the Bloch vectors \(\overset {\rightharpoonup }{r}\) and \(\overset {\rightharpoonup }{s}\) in z and x direction respectively. The surfaces of geometric discord are composed of three interaction ”cylinders” along three orthogonal directions of \(\overset {\rightharpoonup }{c}_{1}\) , \(\overset {\rightharpoonup }{c}_{2}\) and \(\overset {\rightharpoonup }{c}_{3}\) . We study the different images corresponding to different values of geometric discord, the Bloch vectors as well as p. In the phase damping channel, the geometric discord keeps constant over a period of time, furthermore the geometric discord and the quantum discord have the same sudden change point for Non-X-structured state.  相似文献   

16.
Recent numerical studies of the coupled Einstein–Klein–Gordon system in a cavity have provided compelling evidence that confined scalar fields generically collapse to form black holes. Motivated by this intriguing discovery, we here use analytical tools in order to study the characteristic resonance spectra of the confined fields. These discrete resonant frequencies are expected to dominate the late-time dynamics of the coupled black-hole-field-cage system. We consider caged Reissner–Nordström black holes whose confining mirrors are placed in the near-horizon region \(x_{\text {m}}\equiv (r_{\text {m}}-r_+)/r_+\ll \tau \equiv (r_+-r_-)/r_+\) (here \(r_{\text {m}}\) is the radius of the confining mirror and \(r_{\pm }\) are the radii of the black-hole horizons). We obtain a simple analytical expression for the fundamental quasinormal resonances of the coupled black-hole-field-cage system: \(\omega _n=-i2\pi T_{\text {BH}} \cdot n\left[ 1+O(x^n_{\text {m}}/\tau ^n)\right] \) , where \(T_{\text {BH}}\) is the temperature of the caged black hole and \(n=1,2,3,...\) is the resonance parameter.  相似文献   

17.
This paper inquires into the concavity of the map \(N\mapsto v_s(N)\) from the integers \(N\ge 2\) into the minimal average standardized Riesz pair-energies \(v_s(N)\) of \(N\) -point configurations on the sphere \(\mathbb {S}^2\) for various \(s\in \mathbb {R}\) . The standardized Riesz pair-energy of a pair of points on \(\mathbb {S}^2\) a chordal distance \(r\) apart is \(V_s(r)= s^{-1}\left( r^{-s}-1 \right) \) , \(s \ne 0\) , which becomes \(V_0(r) = \ln \frac{1}{r}\) in the limit \(s\rightarrow 0\) . Averaging it over the \(\left( \begin{array}{c} N\\ 2\end{array}\right) \) distinct pairs in a configuration and minimizing over all possible \(N\) -point configurations defines \(v_s(N)\) . It is known that \(N\mapsto v_s(N)\) is strictly increasing for each \(s\in \mathbb {R}\) , and for \(s<2\) also bounded above, thus “overall concave.” It is (easily) proved that \(N\mapsto v_{-2}^{}(N)\) is even locally strictly concave, and that so is the map \(2n\mapsto v_s(2n)\) for \(s<-2\) . By analyzing computer-experimental data of putatively minimal average Riesz pair-energies \(v_s^x(N)\) for \(s\in \{-1,0,1,2,3\}\) and \(N\in \{2,\ldots ,200\}\) , it is found that the map \(N\mapsto {v}_{-1}^x(N)\) is locally strictly concave, while \(N\mapsto {v}_s^x(N)\) is not always locally strictly concave for \(s\in \{0,1,2,3\}\) : concavity defects occur whenever \(N\in {\mathcal {C}}^{x}_+(s)\) (an \(s\) -specific empirical set of integers). It is found that the empirical map \(s\mapsto {\mathcal {C}}^{x}_+(s),\ s\in \{-2,-1,0,1,2,3\}\) , is set-theoretically increasing; moreover, the percentage of odd numbers in \({\mathcal {C}}^{x}_+(s),\ s\in \{0,1,2,3\}\) is found to increase with \(s\) . The integers in \({\mathcal {C}}^{x}_+(0)\) are few and far between, forming a curious sequence of numbers, reminiscent of the “magic numbers” in nuclear physics. It is conjectured that these new “magic numbers” are associated with optimally symmetric optimal-log-energy \(N\) -point configurations on \(\mathbb {S}^2\) . A list of interesting open problems is extracted from the empirical findings, and some rigorous first steps toward their solutions are presented. It is emphasized how concavity can assist in the solution to Smale’s \(7\) th Problem, which asks for an efficient algorithm to find near-optimal \(N\) -point configurations on \(\mathbb {S}^2\) and higher-dimensional spheres.  相似文献   

18.
In this article we give a new observation of Pesin’s entropy formula, motivated from Mañé’s proof of (Ergod Theory Dyn Sys 1:95–102, 1981). Let \(M\) be a compact Riemann manifold and \(f:\,M\rightarrow M\) be a \(C^1\) diffeomorphism on \(M\) . If \(\mu \) is an \(f\) -invariant probability measure which is absolutely continuous relative to Lebesgue measure and nonuniformly-H \(\ddot{\text {o}}\) lder-continuous(see Definition 1.1), then we have Pesin’s entropy formula, i.e., the metric entropy \(h_\mu (f)\) satisfies $$\begin{aligned} h_{\mu }(f)=\int \sum _{\lambda _i(x)> 0}\lambda _i(x)d\mu , \end{aligned}$$ where \(\lambda _1(x)\ge \lambda _2(x)\ge \cdots \ge \lambda _{dim\,M}(x)\) are the Lyapunov exponents at \(x\) with respect to \(\mu .\) Nonuniformly-H \(\ddot{\text {o}}\) lder-continuous is a new notion from probabilistic perspective weaker than \(C^{1+\alpha }.\)   相似文献   

19.
We derive explicit formulas for λ-brackets of the affine classical \({\mathcal{W}}\) -algebras attached to the minimal and short nilpotent elements of any simple Lie algebra \({\mathfrak{g}}\) . This is used to compute explicitly the first non-trivial PDE of the corresponding integrable generalized Drinfeld–Sokolov hierarchies. It turns out that a reduction of the equation corresponding to a short nilpotent is Svinolupov’s equation attached to a simple Jordan algebra, while a reduction of the equation corresponding to a minimal nilpotent is an integrable Hamiltonian equation on 2h ˇ?3 functions, where h ˇ is the dual Coxeter number of \(\mathfrak{g}\) . In the case when \(\mathfrak{g}\) is \({\mathfrak{sl}_2}\) both these equations coincide with the KdV equation. In the case when \(\mathfrak{g}\) is not of type \({C_n}\) , we associate to the minimal nilpotent element of \(\mathfrak{g}\) yet another generalized Drinfeld–Sokolov hierarchy.  相似文献   

20.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号