首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《印度化学会志》2021,98(1):100002
Dry reforming of methane (DRM) involves catalytic reaction of CO2 and CH4 to produce syngas. Although the process is environmentally beneficial, it has not been implemented on industrial level due to multiple challenges, particularly with regard to catalyst deactivation because of use of very high temperature. A majority of research has been carried out with catalysts based on nickel. However, recently many new varieties catalysts using noble metals, structured silica-foams, zeolites, etc. have been investigated for DRM. The present review paper deals with understanding the process of DRM, importance of catalysts, supports and promoters, various methods of synthesis of catalysts, design of catalyst, catalytic performance and ways to enhance it, constraining elements like poisoning of the catalyst, in addition to physicochemical properties of catalysts. Various properties of supports and promoters like reduction/oxidation potential, acidity/basicity, reducibility, oxygen storage capacity, etc. are responsible for catalyst activity and stability. It identifies critical gaps and provides future directions.  相似文献   

2.
Hydrogen production by steam reforming of methane using catalytic membrane reactors was investigated first by simulation, then by experimentation. The membrane reactor simulation, using an isothermal and plug-flow model with selective permeation from reactant stream to permeate stream, was conducted to evaluate the effect of permselectivity on membrane reactor performance – such as methane conversion and hydrogen yield – at pressures as high as 1000 kPa. The simulation study, with a target for methane conversion of 0.8, showed that hydrogen yield and production rate have approximately the same dependency on operating conditions, such as reaction pressure, if the permeance ratio of hydrogen over nitrogen ((H2/N2)) is larger than 100 and of H2 over H2O is larger than 15. Catalytic membrane reactors, consisting of a microporous Ni-doped SiO2 top layer and a catalytic support, were prepared and applied experimentally for steam reforming of methane at 500 °C. A bimodal catalytic support, which allows large diffusivity and high dispersion of the metal catalyst, was prepared for the enhancement of membrane catalytic activity. Catalytic membranes having H2 permeances in the range of 2–5 × 10−6 m3 m−2 s−1 kPa−1, with H2/N2 of 25–500 and H2/H2O of 6–15, were examined for steam reforming of methane. Increased performance for the production of hydrogen was experimentally obtained with an increase in reaction-side pressure (as high as 500 kPa), which agreed with the theoretical simulation with no fitting parameters.  相似文献   

3.
A gas-tight BaCo0.7Fe0.2Nb0.1O3-δ (BCFNO) tubular membrane was fabricated by hot pressure casting. And a membrane reactor with BCFNO tubular membrane and Ag-based sealant was readily constructed and applied to partial oxidation of CH4 in coke oven gas. At 875 ℃, 95% of methane conversion, 91% of H2 and as high as 10 ml·cm-2·min-1 of oxygen permeation flux were obtained. There was a good match in the coefficient of thermal expansion between Ag-based alloy and BCFNO membrane materials. The tubular BCFNO membrane reactor packed with Ni-based catalysts exhibited not only high activity but also good stability in hydrogen-enriched coke oven gas (COG) atmosphere.  相似文献   

4.
以硝酸亚铈(Ce(NO33·6H2O)和正硅酸四乙酯(C8H20O4Si)为前驱体,采用溶胶-凝胶法合成了系列具有大比表面积的xCeO2-(1-x)SiO2(x = 0,0.25,0.50,0.75,1)复合氧化物载体,然后浸渍活性组分Ni制得用于甲烷部分氧化制合成气的Ni催化剂。运用N2物理吸附-脱附、X射线粉末衍射、扫描电镜、紫外-可见漫反射光谱、氢程序升温还原、氨程序升温脱附和热重等手段对所得催化剂的组织结构、还原性、表面酸性和积炭行为等进行了表征;同时考察了催化剂的组成、焙烧温度和反应时间等对催化剂在甲烷部分氧化制合成气中催化性能的影响。表征结果表明,该系列Ni/CeO2-SiO2催化剂具有大比表面积,CeO2晶粒较小,NiO的分散性好且易被还原,表面酸性弱,不容易积炭。当Ce/Si摩尔比为1:1,活性组分Ni的质量分数为10%,焙烧温度为700℃时,所制备的Ni/CeO2-SiO2催化剂表现出较好的稳定性、最高的CH4转化率(~84%)和对产物CO及H2的选择性(>87%)。  相似文献   

5.
李庆远  季生福  胡金勇  蒋赛 《催化学报》2013,34(7):1462-1468
采用浸渍法制备了SiO2, γ-Al2O3, CaO和TiO2负载的Ni催化剂, 以及不同MgO含量的MgO-7.5%Ni/γ-Al2O3催化剂,利用X射线衍射和N2吸附-脱附技术表征了催化剂的结构,在固定床反应器上评价了它们在稻草水蒸气催化重整制合成气反应中的催化性能,考察了反应条件对催化剂性能的影响.结果表明, 以γ-Al2O3为载体时Ni催化剂活性最高,其中7.5%Ni/γ-Al2O3催化剂的H2收率可达1071.3ml/g,H2:CO的体积比为1.4:1;同时,MgO的添加进一步提高了该催化剂的性能,当MgO含量为1.0%时,H2收率可达1194.6ml/g,H2:CO体积比可达3.9:1.可见MgO的加入促进了Ni基催化剂上稻草水蒸气催化重整制合成气反应的进行,同时使得合成气中CO发生水-汽转换反应,从而大大提高了合成气中H2含量.  相似文献   

6.
Summary Carbonization of the surface of alumina-based catalysts has been studied with respect to the composition of the catalysts and conditions of the propionitrile ammonolysis. It was shown that the surface concentration of carbon increases with the increase in temperature and with time of the reaction and depends on the catalysts nature in the order: Al-Zr(5)-O < Al-Zr(40)-O < Al-O < Al-Mg-O. The surface concentration of the Brönsted acidic sites follows the same sequence.  相似文献   

7.
通过共沉淀法制备铈锆固溶体作为载体,采用等体积、分步浸渍的方法制备了一系列10% Ni-3% La/CexZr1-xO2(X=0、0.16、0.5、0.75、1)催化剂,并将其应用到甲烷部分氧化和甲烷二氧化碳重整耦合制合成气的反应中。对不同Ce/Zr比的催化剂性能展开研究,采用XRD、H2-TPR、SEM手段对载体及催化剂进行了表征。结果表明,铈锆固溶体的形成不仅提高了催化剂表面活性组分的分散度,使催化剂表面NiO晶粒尺寸从26.5 nm减到13.7 nm;而且能够加强活性组分与载体之间的相互作用,提高催化剂的热稳定性能;随着Ce/Zr比的增加,催化剂的转化率、选择性及稳定性随之增强,其关系为:Ni-La/Ce0.75Zr0.25O2 > Ni-La/Ce0.5Zr0.5O2 > Ni-La/Ce0.16Zr0.84O2。  相似文献   

8.
采用浸渍法制备了一系列不同N i含量的N iO/La2O3催化剂,并利用XRD、BET对催化剂结构进行了表征,采用常压下固定床石英管反应器考察了催化剂对甲烷部分氧化制合成气的反应性能和催化剂的稳定性,其甲烷转化率与反应温度、N i含量以及空速有关.结果表明,N i含量为30%的N iO/La2O3催化剂具有良好的催化活性,800℃时甲烷的转化率为88%,CO选择性可达83%,100 h的连续测试显示N iO/La2O3具有良好的稳定性.  相似文献   

9.
《Mendeleev Communications》2022,32(1):129-131
Ceria-based solid solutions have been proposed as catalytic supports for the conversion of methane to syngas. Control of oxygen vacancies in vacancy-rich oxides represents a promising way to stable catalysts with improved activity.  相似文献   

10.
CeO2 oxygen carrier was prepared by precipitation method and tested by two-step steam reforming of methane (SRM). Two-step SRM for hydrogen and syngas generation is investigated in a fixed-bed reactor. Methane is directly converted to syngas at a H2/CO ratio close to 2 : 1 at a high temperature (above 750 °C) by the lattice oxygen of CeO2; methane cracking is found when the reduction degree of CeO2 was above 5.0% at 850 °C in methane isothermal reaction. CeO2?δ obtained from methane isothermal reaction can split water to generate CO-free hydrogen and renew its lattice oxygen at 700 °C; simultaneously, deposited carbon is selectively oxidized to CO2 by steam following the reaction (C+2H2O→CO2+2H2). Slight deactivation in terms of amounts of desired products (syngas and hydrogen) is observed in ten repetitive two-step SRM process due to the carbon deposition on CeO2 surface as well as sintering of CeO2.  相似文献   

11.
采用浸渍法制备了NiO/MgO催化剂,用TPR、XRD、BET、H2(O2)化学吸附等技术对催化剂进行了表征,对催化剂在甲烷空气部分氧化与CO2重整耦合制合成气反应中的催化性能进行了评价。结果表明,在800 ℃焙烧的催化剂中,NiO完全与MgO形成NixMg1-xO固溶体。与低温焙烧的NiO/MgO催化剂相比,虽然NixMg1-xO固溶体催化剂的还原度较低,但可以获得较高的金属分散度和较小的金属粒径,能有效抑制积炭的生成,在反应过程中显示出良好的活性稳定性。对于900 ℃焙烧的催化剂,由于形成了更多难还原的体相固溶体,催化剂的初活性较低。  相似文献   

12.
甲烷和二氧化碳在煤焦上反应制备合成气实验研究   总被引:3,自引:1,他引:2  
以煤与甲烷共转化制备合成气的研究为背景,通过考察固定床反应器上甲烷和二氧化碳分别在石英砂、煤灰和煤焦上的反应过程,证实了煤焦中的碳结构在共转化过程中对甲烷转化具有催化作用。同时考察了反应温度(1073K~1223K)、CH4/CO2比(0.33~3.00)和气固接触时间等工艺条件对甲烷转化率、气相产物中H2/CO比的影响。结果表明,甲烷的转化率随着反应温度和气固接触时间的增加而增大,随CH4/CO2比的增加而减小。在考察范围内甲烷的转化率最高达到了86%。反应物中CH4/CO2比的改变可以起到调节产品气中H2/CO比的作用,0.4~2.0调节。  相似文献   

13.
A nickel nanowire catalyst was prepared by a hard template method,and characterized by transmission electron microscopy (TEM),N2 physical adsorption,X-ray photoelectron spectrometry (XPS),X-ray diffraction (XRD) and H2 temperature-programmed reduction (H2-TPR).The catalytic properties of the nanowire catalyst in the partial oxidation of methane to syngas were compared with a metallic Ni catalyst which was prepared with nickel sponge.The characterization results showed that the nickel nanowire catalyst had high specific surface area and there was more NiO phase in the nickel nanowire catalyst than in the metallic Ni catalyst.The reaction results showed that the nickel nanowire catalyst had high CH4 conversion and selectivities for H2 and CO under low space velocity.  相似文献   

14.
赵坤  何方  黄振  郑安庆  李海滨  赵增立 《催化学报》2014,35(7):1196-1205
采用燃烧法制备了Sr掺杂钙钛矿型氧化物La1-xSrxFeO3(x=0,0.3,0.5,0.9)载氧体,对载氧体分别进行X射线衍射、扫描电镜和H2程序升温还原反应表征,在热重循环装置和固定床反应装置上考察甲烷与载氧体晶格氧的部分氧化反应.结果表明,La1-xSrxFeO3氧化物中的晶格氧适用于甲烷部分氧化制合成气,晶格氧的得失是一个可逆过程,Sr的掺杂提高了载氧体的供氧能力,5次循环后载氧体得失晶格氧的能力没有明显的衰减.从甲烷转化率、n(H2)/n(CO)比以及H2和CO的选择性等方面来考虑,x=0.3-0.5比较理想,甲烷转化率维持在70%左右,气体产物中n(H2)/n(CO)约为2,CH4没有发生明显的裂解.  相似文献   

15.
Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (SIC) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.  相似文献   

16.
Dense tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) membranes were successfully prepared by the plastic extrusion method. The oxygen permeation flux was determined at different oxygen partial pressures in the shell side and different temperatures between 700 and 900 °C. The oxygen vacancy diffusion coefficients (Dv) at different temperatures were calculated from the dependence of oxygen permeation flux on the oxygen partial pressure term based on the surface current exchange model. No unsteady-state of oxygen permeation flux was observed at the initial stage in our experiments. The reason is the equilibrium time is too short (less than 10 min) to observe the unsteady-state in time. The increase of the helium flow rate can increase the oxygen permeation flux, which is due to the decrease of the oxygen partial pressure in the tube side with increasing of the helium flow rate. The oxygen permeation flux can also be affected by the air flow rate in the shell side when the air flow rate is lower than 150 ml/min. But the oxygen permeation flux is insensitive to the air flow rate when the air flow is higher than 150 ml/min. The membrane tube was operated steadily for 150 h with oxygen permeation flux of 1.12 ml/(cm2 min) at 875 °C. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis showed that both the surface exposed to air and the surface exposed to helium of the BSCFO membrane tube after permeation for 150 h are similar to the fresh membrane tube in composition and structure. These results indicated that the membrane tube exhibits high structure stability.  相似文献   

17.
Converting methane and carbon dioxide into hydrogen and carbon monoxide is significant and attractive because it can mitigate the greenhouse effect and produce useful chemical intermediate. However, these two greenhouse gases are challenging to convert due to their high bond energy and chemically inert. Although thermocatalytic dry reforming of methane (DRM) achieves high efficiency, it requires high energy and often causes deactivation due to carbon deposition. Recently, a lot of research results show that photo-enhanced DRM is a promising and green route for this reaction under relatively mild conditions. This review first introduces the importance and challenge of CH4 and CO2 conversion. Then, we summarize the related reports of photo-enhanced dry reforming of methane in detail, including material preparation, experimental conditions and results, and mechanism study. In particular, the related studies have been classified according to types of input energy and the types of catalyst. Finally, we provide insightful perspectives and prospects for the future development of this field.  相似文献   

18.
Dense planar and tubular oxygen separation membranes of La0.6Ca0.4Fe0.75Co0.25O3– were investigated as reactors for the partial oxidation (POX) of methane to syngas. Their permeation properties were measured in an air/argon pO2 gradient as a function of temperature. At 900 °C, the oxygen flux through a 1.26-mm-thick membrane was 0.075 mol/cm2·s and through a 0.25-mm-thick tube, 0.24 mol/cm2·s.For the POX measurements, a catalyst was added to the membrane and methane was introduced on the argon side. This resulted in a gradual increase of the oxygen flux with increasing concentration of methane, reaching 2 mol/cm2·s at 900 °C with pure methane. For the planar reactor, the CO selectivity reached 99% and the CH4 conversion 75% at 918 °C with pure methane. For the tubular reactor, the CO selectivity and CH4 conversion were 83 and 99%, respectively, under the same conditions. After 1,400 h of operation in a tubular POX reactor, the membrane was examined revealing phase demixing and local decomposition.Presented at the OSSEP Workshop Ionic and Mixed Conductors: Methods and Processes, Aveiro, Portugal, 10–12 April 2003  相似文献   

19.
In this paper, three kinds of MgO with different specific surface area were prepared, and their effects on the catalytic performance of nickel catalysts for the carbon dioxide reforming of methane were investigated. The results showed that MgO support with the higher specific surface area led to the higher dispersion of the active metal, which resulted in the higher initial activity. On the other hand, the specific surface area of MgO materials might not be the dominant factor for the basicity of support to chemisorb and activate CO2, which was another important factor for the performance of catalysts. Herein, Ni/MgO(CA) catalyst with proper specific surface area and strong ability to activate CO2 exhibited stable catalytic property and the carbon species deposited on the Ni/MgO(CA) catalyst after 10 h of reaction at 650 °C were mainly activated carbon species.  相似文献   

20.
Highly-effective sustainable hydrogen production from ethanol and water was achieved in a tubular dense mixed-conducting oxygen permeable membrane reactor, in which water splitting took place at the tube side of the membrane and oxidative steam reforming of ethanol occurred at the shell side simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号