首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Zinc oxide colloids with controlled size, shape, and structure   总被引:1,自引:0,他引:1  
Highly dispersed uniform ZnO particles of different sizes and shapes were prepared by slowly adding zinc salt and sodium hydroxide solutions in parallel into aqueous solutions of Arabic gum. Except for the very early stages, the precipitated solids consisted of a well-defined zinc oxide phase. Depending on the experimental conditions, the size of the final polycrystalline particles formed by the aggregation of nanosize entities varied from 100 to 300 nm. The reaction temperature affected both the size of the nanosize precursors and their arrangement in the final particles. At ambient temperature the primary nanoparticles, approximately 10 nm in size, formed spherical aggregates, while at 600 degrees C they were much larger (44 nm) and combined to form rather uniform hexagonal ZnO prisms. The aspect ratio and the internal structure of the latter could be altered by changing the nature of the zinc salt, the addition rate, and the initial concentration of the reactants. Based on the findings of the study a two-stage mechanism for the formation of uniform polycrystalline particles with well-defined geometric shapes is proposed.  相似文献   

2.
The solution structural and formyl substrate reactivity properties of a nitrogen/sulfur-ligated zinc hydroxide complex, [(bmnpaZn)2(mu-OH)2](ClO4)2 (1, bmnpa = N,N-bis-2-(methylthio)ethyl-N-((6-neopentylamino-2-pyridyl)methyl)amine), in acetonitrile and methanol are reported. In CH3CN, 1 has a binuclear cation [(bmnpaZn)2(mu-OH)2]2+ that is stabilized by secondary hydrogen bonding and CH/pi interactions involving the bmnpa chelate ligand. In CH3OH, 1 undergoes reaction with solvent to yield a zinc methoxide species, as determined by 1H NMR and electrospray mass spectral analysis. Treatment of 1 with methyl formate in CH3CN results in stoichiometric hydrolysis of the formyl ester to produce [(bmnpa)Zn(O2CH)]ClO4 (2) and methanol. The formate complex was identified via independent synthesis and characterization (X-ray crystallography, 1H and 13C NMR, FTIR, LRFAB-MS, conductance, and elemental analysis). In the solid state, 2n has a formate-bridged coordination polymer-type structure. However, in CH3CN, 2 behaves as 1:1 electrolyte, indicating cleavage of the polymer structure into mononuclear [(bmnpa)Zn(O2CH)]ClO4 species. Treatment of 1 with a stoichiometric amount of formanilide in CH3CN for 48 h at 45 degrees C results in decomposition of the zinc hydroxide complex to yield the free bmnpa ligand and an inorganic solid, presumably a zinc hydroxide or oxide species. Treatment of 1 with a stoichiometric amount of ethyl formate in CD3OD results in rapid, quantitative transesterification of the formyl carboxylate ester. A control reaction indicates that this transesterification reaction does not occur on the same time scale in the absence of the catalyst. Treatment of 1 with an excess of ethyl formate in CD3OD results in catalytic formyl carboxylate ester transesterification, with approximately 1000 turnovers in 60 min at 22(1) degrees C. Treatment of a CD3OD solution of 1 (0.5 equiv) with formanilide (1 equiv) results in the formation of aniline, d3-methyl formate, and the zinc formate complex 2. While aniline is produced stoichiometrically, the yield of d3-methyl formate varied from 30 to 50%, and the yield of 2 varied from 50 to 70% in repetitive experiments. Formation of both d3-methyl formate and 2 indicates that both methanolysis and hydrolysis reactions take place.  相似文献   

3.
Well-crystallized zinc oxide nanorods have been fabricated by single step solid-state reaction using zinc acetate and sodium hydroxide, at room temperature. The sodium lauryl sulfate (SLS) stabilized zinc oxide nanorods were characterized by using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and photoluminescence spectroscopy. The X-ray diffraction revealed the wurtzite structure of zinc oxide. The size estimation by XRD and TEM confirmed that the ZnO nanorods are made of single crystals. The growth of zinc oxide crystals into rod shape was found to be closely related to its hexagonal nature. The mass ratio of SLS:ZnO in the nanorods was found to be 1:10 based on the thermogravimetric analysis. Blue shift of photoluminescence emission was noticed in the ZnO nanorods when compared to that of ZnO bulk. FT-IR analysis confirmed the binding of SLS with ZnO nanorods. Apart from ease of preparation, this method has the advantage of eco-friendliness since the solvent and other harmful chemicals were eliminated in the synthesis protocol.  相似文献   

4.
Wurtzite ZnO hexagonal nanopyramids were successfully synthesized in the liquid phase from homogeneous methanolic solutions of zinc acetate and tetramethylammonium hydroxide at an excess of zinc ions. The formation and properties of the nanocrystals were examined as a function of synthesis conditions. No significant influence of the [Zn(2+)]/[OH(-)] ratio was noticed on the final particle size, in spite of increased amounts of OH(-) ions, which tend to accelerate the particle nucleation and growth. Nevertheless, the reactant concentration ratio influences the surface properties of the ZnO nanocrystals. Mesoporous ZnO films were prepared by doctor blading ethanolic pastes containing ZnO nanoparticles and ethyl cellulose onto FTO conductive glass substrate followed by calcination. Additionally, the influence of a plasticizer (triacetin)-used during the paste preparation-on the film quality was investigated. A higher content of ZnO nanoparticles and plasticizer in the pastes improved the film quality. Four different temperatures (i.e., 400, 425, 450, and 475 °C) were used for the film calcination and their influence on the structural properties of the films was characterized. In principle, increasing the calcination temperature goes hand in hand with an increase of particle size, as well as the pore diameter and reduction of the surface area. Suitable mesoporous films were employed as photoanodes in dye sensitized solar cells (DSSCs). In order to assess the effect of the varied parameters on complete DSSC devices-using cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II)bis(tetrabutylammonium (N719) as a sensitizer-incident photon to current efficiency (IPCE) and current voltage measurements were carried out. The IPCE measurements confirmed photoinduced electron injection from the dye, reaching IPCE values up to 76%. Furthermore, current-voltage characteristics of complete cells emphasized the importance of the proper preparation methods and temperatures. These features are important assets for the preparation of nanocrystalline ZnO based photoelectrodes and for improving the DSSC performance.  相似文献   

5.
Zinc oxide powders with different morphologies and grain sizes were synthesized using solvothermal methods from ethanolic zinc acetate solutions in the presence of lithium hydroxide. The influence of the temperature and the time of the reaction, as well as the pH value of the starting solution, on the ZnO particle size and morphology were examined. It was found that an increase in the pH value from 8 to 12 results in a significant decrease in the mean particle size. Also, the particles?? morphology can be changed from hexagonal plates and prisms to rods by controlling the reaction time and the temperature. The crystallization mechanism is discussed, based on established correlations such as the particle size/shape versus the reaction parameters. Dissolution/recrystallisation is the most probable growth mechanism responsible for the ZnO particles?? morphology obtained in the solvothermal (hydrothermal) reactions with a basic solution. The planar structure of the zinc-hydroxy-acetate molecule plays the main role in growing the structures during the sovothermal reactions with a slightly acid solution.  相似文献   

6.
In this work, monodisperse nanoparticles and nanorods of lanthanum hydroxide was synthesized from the reaction of lanthanum(III) nitrate and sodium hydroxide by sonochemical method. The effect of some of the parameters such as feeding rate of precursors, different solvents of reaction, time of sonication, and various surfactants on the particle size and morphology of products was studied. The as-prepared products were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy.  相似文献   

7.
Three types of calcium precursors (nitrate, hydroxide and catbonate) were used in the synthesis of carbonated hydroxyapatite (cHA) using a precipitation method via a chemical reaction with di-ammonium hydrogen phosphate as the phosphate precursor. The precipitation method was chosen over many other methods due to its flexibility to changes in processing parameters to control the phases formed, the particle size, as well as, the morphology of the as-synthesized powders. The focus of the study was on cHA as it is deemed to mimic the composition of the human bone much closer as compared to the stoichiometric hydroxyapatite. When the chemical reaction was completed, the precipitate was dried, ground and characterized by x-ray diffraction (XRD), electron microscopy (both FESEM and TEM) and particle size analysis. Only the nitrate precursor produced a single-phase carbonated hydroxyapatite (cHA), whilst the other two precursors produced a secondary calcite phase or did not react fully. This is due to the low solubility of the calcium hydroxide and the incomplete reaction of the calcium carbonate. An increase in pH has been observed to lead to higher carbonate content in the synthesized cHA and a smaller crystallite size.  相似文献   

8.
The vapor-phase synthesis of ultrafine powders in reactive thermal plasma systems is studied. A mathematical model is developed to determine the effect of quenching conditions on the size characteristics of powders produced. The particle nucleation is considered to be due to both condensation of product vapor and surface reaction between adsorbed reactant species. The particle growth is considered to be exclusively due to further condensation of product vapor. Numerical predictions on powder formation are explored through a case study for the synthesis of zinc oxide powders from zinc vapor and oxygen carried in argon gas. The results of the present srudy indicate that the size characteristics of plasma-produced powders can be significantly enhanced by gradual, regulated quenching, as opposed to the rapid quenching conventionally used in the past. The results further indicate that distribution of the quench gas along the reactor provides an effective means to accomplish the much desired control over the powder properties.  相似文献   

9.
A homogeneous liquid phase reaction between barium chloride (BaCl(2)) and sodium sulphate (Na(2)SO(4)) was conducted in a narrow channel reactor to produce barium sulphate (BaSO(4)) precipitate. The effects of channel dimensions and channel residence times on crystal size, crystal size distribution, nucleation rates, crystal morphology and conversion of reactants were investigated at different levels of reactant supersaturation ratio. Our results indicate that the smallest particle sizes are favoured when supersaturation ratios and channel velocities are high. The minimum average particle diameter observed was approximately 0.2 microm in a channel of hydraulic diameter 0.5 mm and length 20 cm at an initial supersaturation ratio of 4483 (0.1 M), which correspond to conditions giving rise to the highest nucleation rates. It has also been observed that particle size depends on the conversion to product, the smallest particles being formed when conversion lies within the range of 30 to 40%. Conversions in excess of 60% have been reached but there is a detectable limiting effect with increased supersaturation and reduced residence times. Experiments conducted at similar levels of supersaturation under stirred tank conditions showed that particle size was consistently larger and particle size distribution was much broader than that achieved in the narrow channel reactor. Scanning electron microscopy (SEM) images of the crystals formed in the narrow channels show that spherical particles dominate in the smallest channels at high velocities whilst coarse, tabular crystals are obtained in the larger channels. Greater tendency to agglomerate is also observed at high supersaturation ratios, after one minute of reaction.  相似文献   

10.
o,o′-Dihydroxyazo compounds are spectral sensitizers for the photosemiconductor properties of zinc oxide. It is shown that 1-(2-hydroxyphenylazo-)-2-naphthol (II) forms a 1:1 Zn complex on the surface of ZnO particles if adsorbed from toluene solution. With most samples of ZnO a Langmuir type adsorption isotherm is obtained. The concentration of the dye at saturation relative to the BET surface of the ZnO particles correponds to a slightly oblique edge-on arrangement of the dye molecules on the surfaces. In the case of ZnO pretreated with propionic acid and having taken up dye in excess of a monolayer, it can be shown by electron microscopy that tail-like complexes (zinc: dye ratio = 1:1) are formed, and that these complexes contain zinc which was originally on the particle surfaces.  相似文献   

11.
煤中混入氧化锌高温焦炉煤气脱硫行为的研究   总被引:4,自引:3,他引:4  
在热力学模拟结果的基础上,利用在练变煤中添加氧化锌进行焦炉煤气均相脱硫的行为的研究。实验结果表明:在炼焦前期,煤中添加氧化锌可以有效抑制煤中硫的释放,实验所用煤样中的最佳的氧化锌添加量是理论计算所需量的1.4倍.顺炼焦后期,由于焦炉煤气中氢气的作用,半焦中硫化锌和氧化锌开始分解,气态锌和H2S随焦炉煤气的温度降低又生成硫化锌,从而实现了焦炉煤气的脱硫,而且对焦炭质量的影响很小,氧化锌的添加量的增加有利于焦炉煤气进一步的脱硫。  相似文献   

12.
在110~180 ℃范围内, 以Zn(OH)2与苯甲酸为原料水热法成功合成了层状氢氧化苯甲酸锌化合物. 通过XRD、TG-DTA、SEM、TEM和元素分析研究了合成产物的结构、形貌、性质和化学组成, 探讨了合成条件对水热反应产物的影响. 当C6H5COOH/Zn的摩尔比为0.9~1.0, 水热温度130~150 ℃及水热反应12 h, 合成的层状化合物具有纤维状粒子特征, 层间距为1.44 nm, 化学组成为Zn(OH)1.12•(C6H5COO)0.88.  相似文献   

13.
纳米氧化锌粒子分散性对其吸收光谱的影响   总被引:2,自引:0,他引:2  
在异丙醇中用氢氧化钠分别与醋酸锌及溴化锌反应制备了纳米氧化锌粒子. 分别用高分辨率电子显微镜及原位紫外吸收光谱测定了粒子大小及分布. 实验结果表明, 粒子的增大服从LSW (Lifshitz-Slyozov-Wagner)模型, 即粒子体积随老化时间线性增大;但粒子的分布不符合LSW模型, 这与他人的研究结果不一致. 用计算机数值模拟确定了纳米氧化锌分布函数对其紫外吸收光谱的影响, 发现在紫外吸收边附近光谱发生弯曲, 且随粒子分布标准方差(SD)的增大, 弯曲更显著, 引起紫外吸收光谱红移, 这将导致用吸收边计算氧化锌粒子大小时产生正误差. 就单分散(SD/γ<5%, γ是粒子的平均半径)纳米氧化锌而言, 这种正误差仅为2%, 但当粒子分布的SD/γ达到15%时, 所产生的正误差可高达15.1%.  相似文献   

14.
Cerium oxide (CeO(2)) nanoparticles were prepared sonochemically, by using cerium nitrate and azodicarbonamide as starting materials, and ethylenediamine or tetraalkylammonium hydroxide as additives. The additives have a strong effect on the particle size and particle size distribution. CeO(2) nanoparticles with small particle size and narrow particle size distribution are obtained with the addition of additives; while highly agglomerated CeO(2) nanoparticles are obtained in the absence of additives. Monodispersed CeO(2) nanoparticles with a mean particle size of ca. 3.3 nm are obtained when tetramethylammonium hydroxide (TMAOH) is used as the additive and the molar ratio of cerium nitrate/azodicarbonamine/TMAOH is 1/1/1. Blue shifts of the absorption peak and the absorption edges of the products are observed in the UV-Vis absorption spectra as a result of the quantum size effect. The samples have been characterized using powder XRD, TEM, DLS, and absorption spectra.  相似文献   

15.
With a view to energetic and (opto)electronic applications, tin (IV) oxide (SnO2) nanoparticles have been successfully prepared at the nanoscale by a templating approach based on the use of zinc (II) oxide (ZnO) as template. The procedure consisted in preparing a mixture of tin precursor and template, subsequently calcined at 650 °C under air to lead to the formation of a SnO2/ZnO composite material. Finally, the material was washed with an alkali solution to remove the template. The template/tin precursor mass ratio was varied in order to tailor the tin (IV) oxide material, especially with a view to main particle size. The resulting SnO2 nanomaterials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, nitrogen adsorption and electron microscopy. The tin (IV) oxide nanomaterial exhibited enhanced textural and physical surface properties (particle size, surface area, pore size) correlated to an increasing template/tin precursor mass ratio. For instance, from optimized experimental conditions, the specific surface area and pore volume were heightened twofold, reaching values of 49 m2/g and 0.32 cm3/g, respectively.  相似文献   

16.
The conditions for synthesizing microtubes with a surface of "house of cards" structure via needlelike particles were examined in detail. Magnesium carbonate trihydrate was formed as a metastable phase in the reaction process using magnesium hydroxide and carbon dioxide as starting materials. Subsequently, in the formation of basic magnesium carbonate from magnesium carbonate trihydrate, microtubes with a surface of house of cards structure were obtained via needlelike particles of magnesium carbonate trihydrate under certain conditions where the temperature and added amount of sodium hydroxide were properly controlled. The pore size of the microtubes could be controlled within a range of 0.5-6 microm by adjusting the condition of needlelike particle formation. In addition, the sustainability of naphthalene release from the microtube was found to be about 6 times higher than that from naphthalene crystal.  相似文献   

17.
Ultradispersed metal oxide nanoparticles have applications as heterogeneous catalysts for organic reactions. Their catalytic activity depends primarily on their surface area, which in turn, is dictated by their size, colloidal concentration and stability. This work presents a microemulsion approach for in situ preparation of ultradispersed copper oxide nanoparticles and discusses the effect of different microemulsion variables on their stability and highest possible time-invariant colloidal concentration (nanoparticle uptake). In addition, a model which describes the effect of the relevant variables on the nanoparticle uptake is evaluated. The preparation technique involved solubilizing CuCl(2) in single microemulsions followed by direct addition of NaOH. Upon addition of NaOH, copper hydroxide nanoparticles stabilized in the water pools formed in addition to a bulk copper hydroxide precipitate at the bottom. The copper hydroxide nanoparticles transformed with time into copper oxide. After reaching a time-independent concentration, mixing had limited effect on the nanoparticle uptake and particle size. Particle size increased with increasing the surfactant concentration, concentration of the precursor salt, and water to surfactant mol ratio; while the nanoparticle uptake increased linearly with the surfactant concentration, displayed an optimum with R and a power function with the concentration of the precursor salt. Surface areas per gram of nanoparticles were much higher than literature values. Even though lower area per gram of nanoparticles was obtained at higher uptake, higher surface area per unit volume of the reverse micellar system was attained. A model based on water uptake by Wisor type II microemulsions, and previously used to describe iron oxide nanoparticle uptake by the same microemulsions, agreed well with the experimental results.  相似文献   

18.
研究以粗氧化锌为原料制取活性氧化锌的浸取工艺。采用氨配合法将粗氧化锌中的锌充分浸取,以低级氧化锌为原料,对固液比、反应时间、碳酸氢铵用量、反应温度等因素先进行单因素实验,考察对氨配合法浸取率的影响,并在此基础上对主要的影响因素进行正交实验,从而优化出最佳浸取工艺条件为:浸取温度40℃,浸取时间3 h,固液比70 g/mL,碳酸氢铵用量2.5 g,浸取率可达92%。  相似文献   

19.
Precipitation of a sparingly soluble salt in the annular gap of a continuous Couette reactor with two unpremixed feeds has been experimentally investigated. Barium chloride and sodium sulphate in stoichiometric ratio are fed at different flow rate in the lower part of the reactor; different feeding modes have been considered. The dependence of precipitation yield, mean crystal size and particle size distribution on rotation speed, axial flow rate and initial supersaturation ratio has been studied. Depending on the operating conditions crystals with different morphologies have been obtained, varying from dentritic tabular crystals to complex pyramidal ones and from single crystals to aggregates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The structure and properties of zinc hydroxide and oxide nanoparticles obtained by chemical and combined means were studied by transmission electron microscopy, X-ray phase, thermal analysis, and atomic emission spectroscopy. The effect of the synthesis conditions on the formation structure and morphology of nanoparticles was studied. It was shown that the electric field effect on a solution allows us to obtain almost single-phase systems with a narrower range of the particle sizes than in the case of chemical deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号