首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform, submicron BaTiO3 crystallites in tetragonal structure were synthesized by a novel low-temperature liquid–solid reaction method mainly via two simple steps: firstly, BaO2·H2O2 submicron particles of about 130–450 nm were precipitated from the reaction of BaCl2 and H2O2 in a slightly alkaline (pH 8) aqueous solution under the ambient condition; secondly, tetragonal phase BaTiO3 submicrocrystals with the size in the range of 180 to 400 nm could be produced by subjecting the as-prepared BaO2·H2O2 and commercial TiO2 submicron particles to thermal treatment in air at 700 °C for 10 h. The as-obtained products were characterized by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectroscopy, and scanning electron microscopy.  相似文献   

2.
Titanium nitride (TiN) films were obtained by the atmospheric pressure chemical vapor deposition method of the TiCl4–N2–H2 system with various flow rates of NH3 at 600°C. The growth characteristics, morphology and microstructure of the TiN films deposited were analyzed by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Without NH3 addition, no TiN was deposited at 600°C as shown in the X-ray diffraction curve. However, by adding NH3 into the TiCl4–N2–H2 system, the crystalline TiN was obtained. The growth rate of TiN films increased with the increase of the NH3 flow rate. The lattice constant of TiN films decreased with the increase of the NH3 flow rate. At a low NH3 flow rate, the TiN (2 2 0) with the highest texture coefficient was found. At a high NH3 flow rate, the texture coefficient of TiN (2 0 0) increased with the increase of the NH3 flow rate. In morphology observation, thicker plate-like TiN was obtained when the NH3 flow rate was increased. When the flow rate of NH3 was 15 sccm, Moiré fringes were observed in the TiN film as determined by TEM analysis. The intrinsic strain was found in the TiN film as deposited with 60 sccm NH3.  相似文献   

3.
A new method of direct synthesis nano-BaTiO3 powders from solution was developed in this study. Dissolving Ba(OH)2·8H2O into water as base solution, nanocrystalline BaTiO3 powders can be obtained by mixing ethanol solution of tetrabutyl titanate with hot base solution under normal pressure. When the temperature of the base solution was 60°C, we obtained crystalline powders with average particle size of about 25 nm. The activity of the powders can be held up because the calcination at high temperature is not necessary using this method.  相似文献   

4.
A novel approach for preparation of red-emitting europium-doped yttrium oxide phosphor (Y2O3:Eu) by using the bicontinuous cubic phase (BCP) process was reported in this paper. The BCP system was composed of anionic surfactant sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and aqueous yttrium nitrate/europium nitrate solution. Energy dispersive spectrometer analysis revealed the homogeneous precipitation occurred in the BCP structure. Thermogravimetric analysis measurements indicated the precursor powder was europium-doped yttrium hydroxide, Y1−xEux(OH)3. Scanning electron microscopy micrographs showed the precursor powder had a primary size about 30 nm and narrow size distribution. After heat treatment in furnace above 700 °C for 4 h, high crystallinity Y2O3:Eu phosphors was obtained. However, the primary size of particles grew to 50–200 nm and the dense agglomerates with a size below 1 μm were formed. X-ray diffraction patterns indicated the crystal structure of precursor powders and Y2O3:Eu phosphors were amorphous and body-centered cubic structure, respectively. The photoluminescence analysis showed that the obtained Y2O3:Eu phosphor had a strong red emitting at 612 nm and the quenching started at a Eu concentration of 10 mol%. This study indicated that the BCP process could be used to prepare the highly efficient oxide-based phosphors.  相似文献   

5.
The structure and thermal stability of ZrO2 films grown on Si (1 0 0) substrates by metalorganic chemical vapor deposition have been studied by high-resolution transmission electron microscopy, selected area electron diffraction and X-ray energy dispersive spectroscopy. As-deposited films consist of tetragonal ZrO2 nanocrystallites and an amorphous Zr silicate interfacial layer. After annealing at 850°C, some monoclinic phase is formed, and the grain size is increased. Annealing a 6 nm thick film at 850°C in O2 revealed that the growth of the interfacial layer is at the expense of the ZrO2 layer. In a 3.0 nm thick Zr silicate interfacial layer, there is a 0.9 nm Zr-free SiO2 region right above the Si substrate. These observations suggest that oxygen reacted with the Si substrate to grow SiO2, and SiO2 reacted with ZrO2 to form a Zr silicate interfacial layer during the deposition and annealing. Oxygen diffusion through the tetragonal ZrO2 phase was found to be relatively easier than through the monoclinic phase.  相似文献   

6.
The Ca3Y2(BO3)4:Er3+ crystal with a size up to 20 mm×30 mm was grown by the Czochralski method. The absorption spectrum was measured and its absorption peaks were assigned to the corresponding transitions between the Er3+ energy levels. A broad emission spectrum from 1429.4 to 1662.8 nm was exhibited from 530 nm wavelength pumping. This crystal is promising as a tunable infrared laser crystal.  相似文献   

7.
The (Pb0.90La0.10)TiO3 [PLT] thick films (3.0 μm) with a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by RF magnetron sputtering method. The PLT thick films comprise five periodicities, the layer thicknesses of (Pb0.90La0.10)TiO3 and PbO in one periodicity are fixed. The PbO buffer layer improves the phase purity and electrical properties of the PLT thick films. The microstructure and electrical properties of the PLT thick films with a PbO buffer layer were studied. The PLT thick films with a PbO buffer layer possess good electrical properties with the remnant polarization (Pr=2.40 μC cm−2), coercive field (Ec=18.2 kV cm−1), dielectric constant (εr=139) and dielectric loss (tan δ=0.0206) at 1 kHz, and pyroelectric coefficient (9.20×10−9 C cm−2 K−1). The result shows the PLT thick film with a PbO buffer layer is a good candidate for pyroelectric detector.  相似文献   

8.
SrTiO3/BaZrO3 heterofilms as buffer layers are deposited on (0 0 1) MgO substrates by an RF-sputtering technique. The atomic structure and the defect configuration at the interfaces are investigated by means of aberration-corrected high-resolution transmission electron microscopy. At the BaZrO3/MgO interface, two types of interfacial structures, MgO/ZrO2-type and MgO/BaO-type, are observed. Antiphase boundaries and dislocations are found at the BaZrO3/MgO interface. The formation of these lattice defects is discussed in terms of film growth and structural imperfections of the substrate surface. At the SrTiO3/BaZrO3 interface, a high density of misfit dislocations is observed with different configurations. The formation of these dislocations contributes both to the relaxation of the large misfit strain and to stopping of the further propagation of lattice defects which are formed in the BaZrO3 layer into the SrTiO3 layer.  相似文献   

9.
Thin films of crystalline lithium niobate (LN) grown on Si(1 0 0) and SiO2 substrates by electron cyclotron resonance plasma sputtering exhibit distinct interfacial structures that strongly affect the orientation of respective films. Growth at 460–600 °C on the Si(1 0 0) surface produced columnar domains of LiNbO3 with well-oriented c-axes, i.e., normal to the surface. When the SiO2 substrate was similarly exposed to plasma at temperatures above 500 °C, however, increased diffusion of Li and Nb atoms into the SiO2 film was seen and this led to an LN–SiO2 alloy interface in which crystal-axis orientations were randomized. This problem was solved by solid-phase crystallization of the deposited film of amorphous LN; the degree of c-axis orientation was then immune to the choice of substrate material.  相似文献   

10.
A new crystal of Nd3+:Sr3Y(BO3)3 with dimension up to 25×35 mm2 was grown by Czochralski method. Absorption and emission spectra of Nd3+: Sr3Y(BO3)3 were investigated . The absorption band at 807 nm has a FWHM of 18 nm. The absorption and emission cross sections are 2.17×10−20 cm2 at 807 nm and 1.88×10−19 cm2 at 1060 nm, respectively. The luminescence lifetime τf is 73 μs at room temperature  相似文献   

11.
Ce substituted Bi1−xCexFeO3 (BCFO) films with x=0–0.15 were deposited on indium tin oxide (ITO)/glass substrates by sol–gel process annealed at 500 °C. Rhombohedral phase was confirmed by XRD study and no impure phases were observed till x=0.15. Substantially enhanced ferroelectricity was observed at room temperature due to the substitution of Ce. In the films with x=0.05 and 0.10, the double remnant polarization are 75.5 and 57.7 μC/cm2 at an applied field 860 kV/cm. Moreover, the breakdown field was enhanced in the films with Ce substitution.  相似文献   

12.
Comprehensive microstructures of 7% cobalt-doped rutile TiO2 thin films grown on c-plane sapphire by pulsed laser deposition were characterized using transmission electron microscopy (TEM). The effects of oxygen pressure during growth on the Co distribution inside the films were investigated, and the detailed growth mechanism of both TiO2 and TiO2+Co was discussed. The similar oxygen sublattices and low mismatch between (1 0 0) rutile and c-plane sapphire favors the rutile phase. However, the three-fold symmetry of the substrate surface resulted in three rutile domain orientation variants, and they grow adjacent to each other. Cobalt was found to precipitate out as nanocrystals inside the TiO2 matrix as the growth pressure of oxygen was decreased. At 0.05 mTorr oxygen pressure, almost all of the Co segregates into crystallographically aligned nanocrystals with a particle size of 4.4±0.15 nm. All the samples have magnetic coercivity at room temperature. The magnetic moment per Co atom increased with decreased oxygen pressure, suggesting that the Co that replaced the Ti2+ in the TiO2 lattice does not have a large magnetic moment.  相似文献   

13.
Titanium oxide (TiO2) films were deposited on silicon substrates at the temperature in the range 50–600 °C by DC reactive magnetron sputtering. It was found that the anatase and rutile phases co-existed in the TiO2 films deposited at 450–500 °C, while only the anatase phase existed in those deposited at other temperatures. The mechanism of such a crystallization behavior of TiO2 films is preliminarily explained.  相似文献   

14.
The MoS2 nanowires with diameters of 4 nm and lengths of 50 nm were synthesized by a hydrothermal method using 0.36 g MoO3 and 1.8 g Na2S as precursors in 0.4 mol/l HCl solution at 260°C. The products are characterized by XRD, XPS, TEM, HTEM and BET. Results show that the as-prepared MoS2 nanowires consist of 1–10 sulfide layers with BET surface areas of 107 m2/g. The possible reaction route and the formation mechanism of the MoS2 nanowires are discussed. The effects of exterior conditions such as pH value, temperature, concentration of precursors and additives on the particle size and morphology of MoS2 crystallites were investigated.  相似文献   

15.
Multi-domained heteroepitaxial rutile-phase TiO2 (1 0 0)-oriented films were grown on Si (1 0 0) substrates by using a 30-nm-thick BaF2 (1 1 1) buffer layer at the TiO2–Si interface. The 50 nm TiO2 films were grown by electron cyclotron resonance oxygen plasma-assisted electron beam evaporation of a titanium source, and the growth temperature was varied from 300 to 600 °C. At an optimal temperature of 500 °C, X-ray diffraction measurements show that rutile phase TiO2 films are produced. Pole figure analysis indicates that the TiO2 layer follows the symmetry of the BaF2 surface mesh, and consists of six (1 0 0)-oriented domains separated by 30° in-plane rotations about the TiO2 [1 0 0] axis. The in-plane alignment between the TiO2 and BaF2 films is oriented as [0 0 1] TiO2 || BaF2 or [0 0 1] TiO2 || BaF2 . Rocking curve and STM analyses suggest that the TiO2 films are more finely grained than the BaF2 film. STM imaging also reveals that the TiO2 surface has morphological features consistent with the BaF2 surface mesh symmetry. One of the optimally grown TiO2 (1 0 0) films was used to template a CrO2 (1 0 0) film which was grown via chemical vapor deposition. Point contact Andreev reflection measurements indicate that the CrO2 film was approximately 70% spin polarized.  相似文献   

16.
In this paper, the technique of environmental scanning electron microscopy (ESEM) has been employed to investigate the surface defects of the (1 1 1) appearing face in 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 (PZN–8%PT) crystals. From the ESEM images, we succeeded in observing and studying the growth hillocks and etch pits, low-angle grain boundaries, and sub-grain boundaries in (1 1 1) face, which were related to the generation of dislocation and stacking faults, respectively. On the other hand, an image of a unique multi-layer lamellar structure and fine step structure obtained in the (1 1 1) face reveals that the dominant fast growth mechanism of PZN–8%PT crystal grown by the flux method is a sub-step mechanism, unlike the screw dislocation growth mechanism.  相似文献   

17.
This paper reports the detail synthesis of a new kind of metal iodate, anhydrous (LiFe1/3)(IO3)2, from aqueous solutions. The synthesized compound shows spinal morphology and is chemical stable up to 400°C. The iodate shows paramagnetic behavior from room temperature down to 4.2 K. At room temperature, the new compound has a hexagonal structure with the lattice parameters a=5.4632(2) Å, c=5.0895(6) Å, Z=1, space group of P63.  相似文献   

18.
Pb[(Zn1/3Nb2/3)0.91Ti0.09]O3 (PZNT91/9) single crystals were grown by a modified Bridgman method directly from melt using an allomeric Pb[(Mg1/3Nb2/3)0.69Ti0.31]O3 (PMNT69/31) single crystal as a seed. X-ray diffraction (XRD) measurement confirmed that the as-grown PZNT91/9 single crystals are of pure perovskite structure. Electrical properties and thermal stabilization of PZNT91/9 crystals grown directly from melt exhibit different characters from those of PZNT91/9 crystals grown from flux, although segregation and the variation of chemical composition are not seriously confirmed by X-ray fluorescence analysis (XPS). The [0 0 1]-oriented PZNT91/9 crystals cut from the middle part of the as-grown crystal boules exhibit broad dielectric-response peaks at around 105 °C, accompanied by apparent frequency dispersion. The values of piezoelectric constant d33, remnant polarization Pr, and induced strain are about 1800–2200 pC/N, 38.8 μC/cm2, and 0.3%, respectively, indicating that the quality of PZNT crystals grown directly from melt can be comparable to those of PZNT91/9 single crystals grown from flux. However, further work deserves attention to improve the dielectric properties of PZNT crystals grown directly from melt. Such unusual characterizations of dielectric properties of PZNT crystals grown directly from melt are considered as correlating with defects, microinhomogeneities, and polar regions.  相似文献   

19.
Cobalt ferrite (CoFe2O4) thin film is epitaxially grown on (0 0 1) SrTiO3 (STO) by laser molecular beam epitaxy (LMBE). The growth modes of CoFe2O4 (CFO) film are found to be sensitive to laser repetition, the transitions from layer-by-layer mode to Stranski–Krastanov (SK) mode and then to island mode occur at the laser repetition of 3 and 5 Hz at 700 °C, respectively. The X-ray diffraction (XRD) results show that the CFO film on (0 0 1) SrTiO3 is compressively strained by the underlying substrate and exhibits high crystallinity with a full-width at half-maximum of 0.86°. Microstructural studies indicate that the as-deposited CFO film is c-oriented island structure with rough surface morphology and the magnetic measurements reveal that the compressive strained CoFe2O4 film exhibits an enhanced out-of-plane magnetization (190 emu/cm3) with a large coercivity (3.8 kOe).  相似文献   

20.
Nanowires of SrFe12O19 with diameters of 100 nm and lengths of 2.5 μm have been successfully synthesized in a hydrothermal cell at 180 °C with an 0.35 T magnetic field applied. The growth behavior of the nanoparticles was compared with that under zero magnetic field. The X-ray diffraction patterns indicate that both of the two processes result in formation of pure SrFe12O19, however transmission electron microscope observations show that the morphology of the particles changed from flake-like in zero magnetic field into nanowires in a magnetic field. Compared to the sample obtained under zero magnetic field, the as-prepared one exhibits a higher saturation magnetization. The possible underlying mechanism responsible for the morphology change and the magnetic properties improvement were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号