首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structural and magnetic properties of Fe 10 at% doped SnO2 powders milled for different times have been investigated. XAS results demonstrate the dilution of Fe atoms in the rutile structure after 5 h of milling. Fe atoms have almost one oxygen vacancy near neighbour. At RT the sample presents the superposition of paramagnetic and ferromagnetic behaviours. When temperature decreases a progressive blocking process was observed. Below 100 K a field shift of hysteresis loops is evident indicating magnetic coupling between ferromagnetic/antiferromagnetic phases.  相似文献   

2.
The TiO2-Mn-TiO2 multilayers are successfully grown on glass and silicon substrates by alternately using radio frequency reactive magnetron sputtering and direct current magnetron sputtering. The structures and the magnetic behaviours of these films are characterised with x-ray diffraction, transmission electron microscope (TEM), vibrating sample magnetometer, and superconducting quantum interference device (SQUID). It is shown that the multi-film consists of a mixture of anatase and rutile TiO2 with an embedded Mn nano-film. It is found that there are two turning points from ferromagnetic phase to antiferromagnetic phase. One is at 42 K attributed to interface coupling between ferromagnetic Mn3O4 and antiferromagnetic Mn2O3, and the other is at 97 K owing to the interface coupling between ferromagnetic Mn and antiferromagnetic MnO. The samples are shown to have ferromagnetic behaviours at room temperature from hysteresis in the M-H loops, and their ferromagnetism is found to vary with the thickness of Mn nano-film. Moreover, the Mn nano-film has a critical thickness of about 18.5 nm, which makes the coercivity of the multi-film reach a maximum of about 3.965×10 2 T.  相似文献   

3.
In this paper, we have investigated Mn-doped SnO2 powder samples prepared by solid-state reaction method. X-ray diffraction showed a single phase polycrystalline rutile structure. The atomic content of Mn ranged from ∼0.8 to 5 at%. Room temperature M-H loops showed a ferromagnetic behavior for all samples. The ferromagnetic Sn0.987Mn0.013O2 showed a coercivity Hc=545 Oe, which is among the highest reported for dilute magnetic semiconductors. The magnetic moment per Mn atom was estimated to be about 2.54 μB of the Sn0.9921Mn0.0079O2 sample. The average magnetic moment per Mn atom sharply decreases with increasing Mn content, while the effective fraction of the Mn ions contributing to the magnetization decreases. The magnetic properties of the Sn1−xMnxO2 are discussed based on the competition between the antiferromagnetic superexchange coupling and the F-center exchange coupling mechanism, in which both oxygen vacancies and magnetic ions are involved.  相似文献   

4.
The magnetic structure of Sr5Rh4O12 is based on Ising chains of rhodium ions with a variable valence, Rh3+-Rh4+. The ordering in the chains is assumed to be ferromagnetic. It has been shown that the magnetic structure and phase diagram of Sr5Rh4O12 are well described in a model taking into account weak antiferromagnetic interactions between the nearest and next-nearest neighbors on the triangular lattice of ferromagnetic Ising chains. The ground state at low temperatures is the two-sublattice stripe phase; this phase in the magnetic field is transformed to the ferrimagnetic phase and, then, to the ferromagnetic phase. Small plateaus can be observed in the region of the transition from the ferrimagnetic phase to the ferromagnetic one.  相似文献   

5.
Insulating uniaxial room‐temperature ferromagnets are a prerequisite for commonplace spin wave‐based devices, the obstacle in contemporary ferromagnets being the coupling of ferromagnetism with large conductivity. It is shown that the uniaxial A1 + 2xTi4+1 ? xO3 (ATO), A = Ni2+,Co2+, and 0.6 < x ≤ 1, thin films are electrically insulating ferromagnets already at room temperature. The octahedra network of the ATO and the corundum and ilmenite structures are the same yet different octahedra‐filling proved to be a route to switch from the antiferromagnetic to ferromagnetic regime. Octahedra can continuously be filled up to x = 1, or vacated (?0.24 < x < 0) in the ATO structure. TiO‐layers, which separate the ferromagnetic (Ni,Co)O‐layers and intermediate the antiferromagnetic coupling between the ferromagnetic layers in the NiTiO3 and CoTiO3 ilmenites, can continuously be replaced by (Ni,Co)O‐layers to convert the ATO‐films to ferromagnetic insulator with abundant direct cation interactions.  相似文献   

6.
The interlayer exchange coupling between Co/Pt perpendicular-to-plane magnetized layers across a thin IrMn spacer layer was experimentally studied. In contrast to earlier studies on interlayer coupling through antiferromagnetic NiO, which revealed an oscillatory coupling behavior as a function of NiO thickness, a ferromagnetic coupling was observed here in the range of IrMn thickness between 0.6 and 1.5 nm and antiferromagnetic between 1.5 and 2.5 nm. The antiferromagnetic coupling is attributed to an orange peel magnetostatic mechanism whereas the ferromagnetic coupling is attributed to an out-of-plane polarization of the antiferromagnetic IrMn layer induced by the interfacial exchange interaction with the adjacent out-of-plane ferromagnetic layers. Measurements of hysteresis loops versus temperature show that the coupling vanishes at 510 K for tIrMn=1 nm. This critical temperature is far below the Néel temperature of bulk IrMn, but above the blocking temperature of IrMn/Co bilayers at such thickness. Using a one-dimensional model describing a partial domain wall in the antiferromagnet, we explain the coupling in terms of an out-of-plane tilt of the Mn moments at the IrMn/(Co/Pt) interfaces yielding a weak net polarization of the IrMn. Finally, the non-oscillatory decay of the coupling was attributed to the compensated spin structure of the IrMn in the parallel to the interfaces.  相似文献   

7.
We reconsider the conventional Moriya approach to the Dzyaloshinsky-Moriya antisymmetric exchange coupling for a single Cu1-O-Cu2 bond in cuprates using a perturbation scheme that provides an optimal way to account for intra-atomic electron correlations, low-symmetry crystal field, and local spin-orbital contributions with a focus on the oxygen term. The Dzyaloshinsky vector and the corresponding weak ferromagnetic moment are shown to be a superposition of comparable and, sometimes, competing local Cu and O contributions. We predict the effect of oxygen staggered spin polarization in the antiferromagnetic edge-shared CuO2 chains due to the uncompensated oxygen Dzyaloshinsky vectors. The polarization is perpendicular to both the main chain antiferromagnetic vector and the CuO2 chain normal. The intermediate 17O NMR is shown to be an effective tool to inspect the effects of Dzyaloshinsky-Moriya coupling in an external magnetic field. In particular, we argue that the puzzling planar 17O Knight shift anomalies observed in the paramagnetic phase of the generic Dzyaloshinsky-Moriya antiferromagnetic cuprate La2CuO4 can be assigned to the effect of the field-induced staggered magnetization. Finally, we revisit the effects of symmetric spin anisotropy, in particular, those directly induced by the Dzyaloshinsky-Moriya coupling. The perturbation scheme generalizes the well-known Moriya approach and presents a basis for reliable quantitative estimates for the symmetric partner of the Dzyaloshinsky-Moriya coupling. In contrast to the conventional standpoint, the parameters of the effective two-ion spin anisotropy are shown to incorporate the contributions of a single-ion anisotropy for two-hole configurations at both Cu and O sites. The text was submitted by the author in English.  相似文献   

8.
We propose a new mechanism to explain the magnetic structure of a recently discovered magnetoresistive double perovskite oxide system, Sr2FeMoO6, with the help of detailed experimental and theoretical results. This model, based on a strong antiferromagnetic coupling between the local moment and the charge carriers arising from local hopping interactions, can give rise to ferromagnetic metallic as well as ferromagnetic insulating ground states. The relevance of this mechanism in understanding the magnetism in dilute magnetic semiconductors such as Ga1 − x Mn x As, is also discussed.  相似文献   

9.
Magneto-optic Kerr magnetometry and neutron reflectometry reveal that Fe layers exhibit magnetic exchange coupling through LaHx spacer layers. Ferromagnetic and antiferromagnetic coupling is observed on multilayers of these materials depending on the thickness of the hydride layers, but without oscillatory behavior. Starting from metallic La dihydride spacer layers the effect of dissolving increasingly more hydrogen was examined. Sign and value of the coupling depend crucially on the hydrogen content x. The coupling can be inverted from antiferromagnetic to ferromagnetic and vice versa. These alterations are due to modifications of the electronic structure of the hydride. When the hydrogen absorption saturates the hydride layers become insulating and the exchange coupling is likely to disappear. In this final state the multilayers are always characterized by a very soft ferromagnetic rectangular hysteresis curve. Upon removal of the hydrogen to the initial concentration the original magnetic structure is restored.  相似文献   

10.
By neutron diffraction and susceptibility measurements the crystallographic and magnetic structures of (CH3NH3)2MnCl4 and (CD3ND3)2MnCl4 have been investigated. These compounds belong to a system of quasi two-dimensional Heisenberg antiferromagnets. At 96K a structural first order phase transition from the tetragonal high-temperature structure to an orthorhombic low-temperature structure was found. A magnetic phase transition from a two-dimensional antiferromagnetic preorder to a three-dimensional magnetic order occurs at 44.5K. The three-dimensional magnetic structure is characterized by antiferromagnetic (MnCl4)2- — layers perpendicular to the c-axis, with a ferromagnetic coupling between interacting next nearest (MnCl4)2- layers. The magnetic moments of the Mn-ions lie in the antiferromagnetic planes.  相似文献   

11.
H. Manaka  M. Nishi  I. Yamada 《高压研究》2013,33(3-6):187-192
Abstract

The two-dimensional Heisenberg antiferromagnet (C2H5NH3)2CuCl4 has the ferromagnetic intralayer exchange interaction, while the extremely weak interlayer exchange interaction is antiferromagnetic. Neutron scattering experiments under high pressures have been performed on this compound. We confirm that the spin structure changes around 1~2 GPa from the collinear alignment along the a-axis to a spin-canting one. The weak moment due to the canting is parallel to the c-axis. The results indicate that the ferromagnetic intralayer and the antiferromagnetic interlayer exchange interactions are maintained up to 1~2 GPa. Why the weak ferromagnetic moment along the c-axis occurs is due to a lowering of crystal symmetry by pressure.  相似文献   

12.
《Physics letters. A》2006,360(2):380-383
One-dimensional dihalide-bridged polymer Co(thiazole)2Cl2 has been studied with the self-consistent full-potential linearized augmented plane wave method (FP_LAPW) based on the density functional theory (DFT). Spin distributions in ferromagnetic and antiferromagnetic states of it have been obtained by the calculation. The electronic structure and magnetic coupling between tow cobalt (II) ions along chain are discussed.  相似文献   

13.
The possibility of Pt–Cr surface alloys formation on Pt(0 0 1) was investigated and their magnetism was calculated by the full-potential linearized augmented plane wave (FLAPW) method with eight different atomic configurations. The most stable structure was calculated to be the Pt-segregated L12 ferromagnetic surface alloy. A3B types (L12 or D022) were more stable compared to AB types (L10). It implies that the A3B type surface alloys may be formed when depositing a monolayer of Cr on Pt(0 0 1). It was found from the total energy calculations that there exists a strong tendency of the Pt segregation. The segregation further stabilizes the surface alloy significantly. The work function of the most stable surface alloy was calculated to be 6.02 eV and the magnetic moment of the surface Cr was much enhanced to 3.3 μB. It is a quite interesting finding that the coupling between Cr and Pt atoms on the surface plane is ferromagnetic in the Pt-segregated L12 ferromagnetic surface alloy, while the coupling is antiferromagnetic in the bulk.  相似文献   

14.
We analyze the phase diagram of a system of spin-1/2 Heisenberg antiferromagnetic chains interacting through a zig-zag coupling, also called zig-zag ladders. Using bosonization techniques we study how a spin-gap or more generally plateaux in magnetization curves arise in different situations. While for coupled XXZchains, one has to deal with a recently discovered chiral perturbation, the coupling term which is present for normal ladders is restored by an external magnetic field, dimerization or the presence of charge carriers. We then proceed with a numerical investigation of the phase diagram of two coupled Heisenberg chains in the presence of a magnetic field. Unusual behaviour is found for ferromagnetic coupled antiferromagnetic chains. Finally, for three (and more) legs one can choose different inequivalent types of coupling between the chains. We find that the three-leg ladder can exhibit a spin-gap and/or non-trivial plateaux in the magnetization curve whose appearance strongly depends on the choice of coupling. Received 11 February 1999 and Received in final form 16 June 1999  相似文献   

15.
The magnetic state of a CaMnO3 ? δ crystal with ordered oxygen vacancies (for δ = 0.25, when the numbers of Mn4+ and Mn3+ ions in the manganite are equal to each other) is studied using neutron diffraction. Magnetic scattering in the CaMnO2.75 crystal in the ground state is determined by the wave vector (1/2, 1/2, 1/2)2π/a c (G-type antiferromagnetic order). In the crystal, long-range magnetic order disappears at the temperature T N = 116 K, whereas short-range magnetic order is retained up to 240 K. It is shown that the instability of the G-type structure in the temperature range 60 K < T < T N is associated, in many respects, with the formation of the C′ antiferromagnetic phase in the bulk of the crystal. The structure of the C′ antiferromagnetic phase involves chains with Mn3+-Mn4+ ferromagnetic interaction. A comparison of the results of the neutron diffraction investigations with the experimental data on the magnetic characteristics and electrical resistivity demonstrates that the specific features revealed in the spin system of the CaMnO2.75 crystal are governed directly by the competition of the Mn3+-Mn4+ ferromagnetic double exchange with the antiferromagnetic superexchange between manganese ions.  相似文献   

16.
B.J. Fechner  R. Pikuła 《Physica A》1975,79(4):433-446
The constant-coupling approximation is extended to an antiferromagnetic spin-12 system with two distinct anisotropic exchange interactions. The thermodynamic properties such as the transition temperature, magnetization, susceptibility and specific heat are discussed for three special cases: (i) ferro- and antiferromagnetic Ising interactions, (ii) isotropic ferro- and antiferromagnetic Heisenberg interactions; and (iii) isotropic ferromagnetic Heisenberg interactions and antiferromagnetic Ising interactions, allowing in each case for two different nearest-neighbour coupling constants. Numerical calculations have been performed for a layer structure with z = 6 intraplanar and z' = 6 interplanar nearest neighbours and the results are compared with those obtained in other approximations. Applying the theory to FeCl2, the exchange constants are evaluated. It is shown that the calculated magnitudes of the interactions strongly depend upon the exchange-interaction model assumed.  相似文献   

17.
《Physics letters. A》2020,384(26):126637
The electronic, magnetic properties and optical absorption of vanadium (V) doped rutile TiO2 have been studied by the generalized gradient approximation GGA and GGA+U (Hubbard coefficient) approach respectively. On the one hand, we consider the influence of vanadium with different doping concentration on the electronic structure. On the other hand, we study double V atoms doped TiO2, mainly study four V-doped TiO2 configurations, and find the magnetic ground states are ferromagnetic state. For the TiO2@V-V1, TiO2@V-V3 and TiO2@V-V4 configurations without O ion as bridge between V-V atoms, there will have a metastable state of antiferromagnetic configurations, while, for the TiO2@V-V2 configurations with an O ion as bridge between V-V atoms, due to the existence of superexchange between V-O-V, there will only exist the ground state of ferromagnetic state and there are no other metastable configurations. Furthermore, the optical properties of V-doped TiO2 are calculated. The results show that the V-doped TiO2 has strong infrared light absorption and visible light absorption.  相似文献   

18.
Magnetic properties of orthoferrosilite FeSiO3 have been examined using susceptibility, magnetization measurements and Mössbauer spectroscopy. From magnetic and Mössbauer measurements, one obtains close values of the magnetic ordering temperature, TN=39±1 K and TN=41±1 K, respectively. The magnetic order is characterized by strong ferromagnetic coupling of Fe2+ moments within the ribbons and a weak antiferromagnetic coupling of the moments between adjacent ribbons. The 4.2 K Mössbauer spectra can be fitted with two different hyperfine magnetic fields Hhf=68 kOe and Hhf=314 kOe which can be assigned to Fe2+ in the octahedrally coordinated M1 and M2 sites, respectively, of the FeSiO3 structure.  相似文献   

19.
GdI2 powder samples have been investigated by means of a.c. susceptibility and magnetisation measurements indicating magnetic ordering below TC = 313 K. The structure consists of strongly coupled ferromagnetic layers of Gd3+ moments aligned perpendicular to the hexagonal crystal axis. The inter-layer coupling is much weaker and probably antiferromagnetic suggesting that GdI2 is to a very good approximation a two-dimensional Heisenberg system.  相似文献   

20.
Spin-density-functional theory is used to calculate the magnetic moment of δ-Mn whose ground state is assumed to be either antiferromagnetic or ferromagnetic. The band structure is given for paramagnetic, antiferromagnetic and ferromagnetic δ-Mn. The magnetic moment of antiferromagnetic δ-Mn is found to be 3μB while that of ferromagnetic δ-Mn is 2.7 μB. The total energy favors the antiferromagnetic ground state by about 0.3 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号