共查询到20条相似文献,搜索用时 15 毫秒
1.
绝缘栅双极晶体管(IGBT)作为功率变流器的核心器件,其稳定状态在一定程度上决定了整个功率变流器的可靠性. 国内某公司生产的一款IGBT模块在使用中出现过电压应力失效而被击穿,将其拆封后发现模块内部存在黑色枝状物,采用X射线光电子能谱法(XPS)对其进行失效分析,发现黑色枝状物的组成为金属硫化物及硫酸盐. 通过元素定性、定量与化学态分析为模块实际应用中的失效机制提供了科学指导. 进一步结合XPS数据结果详细分析了可能的硫物种污染来源,并针对器件封装材料和使用环境提出了改进和预防措施. 相似文献
2.
Biswas A Bayer IS Biris AS Wang T Dervishi E Faupel F 《Advances in colloid and interface science》2012,170(1-2):2-27
This review highlights the most significant advances of the nanofabrication techniques reported over the past decade with a particular focus on the approaches tailored towards the fabrication of functional nano-devices. The review is divided into two sections: top-down and bottom-up nanofabrication. Under the classification of top-down, special attention is given to technical reports that demonstrate multi-directional patterning capabilities less than or equal to 100 nm. These include recent advances in lithographic techniques, such as optical, electron beam, soft, nanoimprint, scanning probe, and block copolymer lithography. Bottom-up nanofabrication techniques--such as, atomic layer deposition, sol-gel nanofabrication, molecular self-assembly, vapor-phase deposition and DNA-scaffolding for nanoelectronics--are also discussed. Specifically, we describe advances in the fabrication of functional nanocomposites and graphene using chemical and physical vapor deposition. Our aim is to provide a comprehensive platform for prominent nanofabrication tools and techniques in order to facilitate the development of new or hybrid nanofabrication techniques leading to novel and efficient functional nanostructured devices. 相似文献
3.
The present contribution is focused on the main advances made in the field of heart-cutting multidimensional gas chromatography (MDGC), over approximately the last decade. Brief details on the history of classical MDGC are also given. A series of applications, carried out with modern-day commercially available instrumentation are shown, demonstrating the usefulness of the bidimensional methodology in specific analytical situations. Finally, the future prospects of MDGC are considered, within the shadow projected by a very powerful GC technique, namely comprehensive two-dimensional gas chromatography. 相似文献
4.
Conjugate polymers provide the possibility of exploiting both the chemical and physical attributes of the polymers for membrane-based gas separation. The presence of delocalized π electrons provides high chain stiffness with low packing density, thus making the membrane a rigid structure that favors facilitated transport. Historically, the polymeric membranes were constrained by the tradeoff relationship between gas permeability and gas selectivity. So, different methods were investigated to prepare the membranes that can overcome the limitation. In recent years, electroconductive polymeric membranes have gained attention with their enhanced transportation properties combining the separation behavior depending on both molecular size discrimination as well as the facilitated transport. They offer better selectivity toward polar gases such as CO2 because of the increased solubility. This review is aimed to provide a literature survey on gas separation using conjugate polymers such as polyaniline, polypyrrole, and some derivatives of polythiophenes. It contains various methods used by different researchers to enhance the gas separation properties of the membranes with improved mechanical and thermal stability such as changing the morphology and membrane preparation methods. In addition, it provides the pros and cons of various factors affecting the conjugate polymer membrane performance. The major challenges and future work that can be done in improving the transportation properties through the membrane to achieve viable membranes are also discussed so that they can be used for commercial and practical applications in the future. 相似文献
5.
Over the last decade, stimuli-responsive microemulsions, that is, those that switch between stable and unstable states in response to certain stimuli, have attracted considerable attention because of their unique properties and potential for diverse applications. Herein, we highlight the recent advances in the development of microemulsions responsive to external triggers such as pH, redox reactions, light, CO2 gas, magnetic field and temperature; discuss the corresponding responses; and reveal important composition–microstructure–macroscopic property relationships to suggest future research directions and potential applications. 相似文献
6.
Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects 总被引:4,自引:0,他引:4
As photodynamic therapy (PDT) continues to develop and find new clinical indications, robust individualized dosimetry is warranted to achieve effective treatments. We posit that the most direct PDT dosimetry is achieved by monitoring singlet oxygen (1O2), the major cytotoxic species generated photochemically during PDT. Its detection and quantification during PDT have been long-term goals for PDT dosimetry and the development of techniques for this, based on detection of its near-infrared luminescence emission (1270 nm), is at a noteworthy stage of development. We begin by discussing the theory behind singlet-oxygen luminescence dosimetry (SOLD) and the seminal contributions that have brought SOLD to its current status. Subsequently, technology developments that could potentially improve SOLD are discussed, together with future areas of research, as well as the potential limitations of this method. We conclude by examining the major thrusts for future SOLD applications: as a tool for quantitative photobiological studies, a point of reference to evaluate other PDT dosimetry techniques, the optimal means to evaluate new photosensitizers and delivery methods and, potentially, a direct and robust clinical dosimetry system. 相似文献
7.
Moriarty RM 《The Journal of organic chemistry》2005,70(8):2893-2903
The synthetic utility of organohypervalent iodine reagents will be illustrated by their use in the alpha-hydroxydimethylacetal formation reaction from enolizable ketones, alpha-hydroxylation, alpha-tosyloxylation, alpha-alkoxylation and arylation of ketones, carbon-carbon bond formation, and intramolecular cyclopropanation using iodonium ylides. The uses of these reagents in the Hunsdiecker reaction of carboxylic acids and Hofmann rearrangement of carboxamides is presented. Specific transformation in the cubane series are discussed. The syntheses of a wide range of heterocycle structures are also presented. A unifying pathway for virtually all these diverse reactions is offered; the central features being initial attack at the iodonium center, ligand coupling, with reductive elimination of iodobenzene to yield the product. 相似文献
8.
Recent advances of biological drugs have broadened the scope of therapeutic targets for a variety of human diseases. This holds true for dozens of RNA-based therapeutics currently under clinical investigation for diseases ranging from genetic disorders to HIV infection to various cancers. These emerging drugs, which include therapeutic ribozymes, aptamers, and small interfering RNAs (siRNAs), demonstrate the unprecedented versatility of RNA. However, RNA is inherently unstable, potentially immunogenic, and typically requires a delivery vehicle for efficient transport to the targeted cells. These issues have hindered the clinical progress of some RNA-based drugs and have contributed to mixed results in clinical testing. Nevertheless, promising results from recent clinical trials suggest that these barriers may be overcome with improved synthetic delivery carriers and chemical modifications of the RNA therapeutics. This review focuses on the clinical results of siRNA, RNA aptamer, and ribozyme therapeutics and the prospects for future successes. 相似文献
9.
A Matsuyama 《Radioisotopes》1990,39(7):316-325
10.
11.
A cell membrane is a flexible lipid bilayer with sophisticated functions which dominate the exchange of material, energy and information between the outside and the inside of the cell. In order to understand and imitate these structures and functions, scientists had already developed a variety of mimic membranes which are alike in form based on lipid bilayer and organic channel-molecules. With the rise of nanotechnology, a large number of synthetic nano-devices are widely used to construct porous biomimetic membranes which are alike in spirit instead of the conventional lipid bilayer membranes. This perspective will first introduce several typical methods to fabricate porous biomimetic membranes, and then discuss the "smart" properties and future applications of these membranes in materials transport, energy transformation and signal transduction aspects. 相似文献
12.
K. J. Ellis 《Journal of Radioanalytical and Nuclear Chemistry》1993,169(2):291-300
In vivo activation analysis has proved to be an analytical assay for the elemental composition of the human body. Applications have included the diagnosis of disease, the evaluation of therapeutic clinical interventions, the study of basic human physiology (especially of the aging process), and the development of reference standards for indirect measures of body composition. This paper will focus on the in vivo activation techniques currently in use and their future prospects, with an emphasis on body Ca, N, C and Cd. The prospects for delayed, prompt, and pulsed neutron activation will be included in the discussion. 相似文献
13.
14.
Taha Azad Amin Tashakor Saman Hosseinkhani 《Analytical and bioanalytical chemistry》2014,406(23):5541-5560
Bioluminescent systems are considered as potent reporter systems for bioanalysis since they have specific characteristics, such as relatively high quantum yields and photon emission over a wide range of colors from green to red. Biochemical events are mostly accomplished through large protein machines. These molecular complexes are built from a few to many proteins organized through their interactions. These protein–protein interactions are vital to facilitate the biological activity of cells. The split-luciferase complementation assay makes the study of two or more interacting proteins possible. In this technique, each of the two domains of luciferase is attached to each partner of two interacting proteins. On interaction of those proteins, luciferase fragments are placed close to each other and form a complemented luciferase, which produces a luminescent signal. Split luciferase is an effective tool for assaying biochemical metabolites, where a domain or an intact protein is inserted into an internally fragmented luciferase, resulting in ligand binding, which causes a change in the emitted signals. We review the various applications of this novel luminescent biosensor in studying protein–protein interactions and assaying metabolites involved in analytical biochemistry, cell communication and cell signaling, molecular biology, and the fate of the whole cell, and show that luciferase-based biosensors are powerful tools that can be applied for diagnostic and therapeutic purposes. 相似文献
15.
16.
Investigations on mono-[2+1]-, -[2+2]-, -[2+3]-, -[2+4]-, and polycycloaddition to [60]fullerene are reviewed. The main reagents used in cycloaddition and the reaction mechanisms are surveyed. The possible applications of cycloadducts are considered. The review covers the investigations of the last five years as well as the most important earlier studies. 相似文献
17.
《Arabian Journal of Chemistry》2020,13(11):8372-8387
Photoelectrochemical (PEC) water splitting supplies an environmentally friendly, sustainable approach to generating renewable hydrogen fuels. Oxides semiconductors, e.g. TiO2, BiVO4, and Fe2O3, have been widely developed as photoelectrodes to demonstrate the utility in PEC systems. Even though significant effort has been made to increase the PEC efficiency, these materials are still far from practical applications. The main issue of metal oxides is the wide bandgap energy that hinders effective photons harvesting from sunlight. In solar spectrum, over 40% of the energy is located in the near-infrared (NIR) region. Developing sophisticated PEC systems that can be driven by NIR illumination is therefore essential. This review gives a concise overview on PEC systems based on the use of NIR-driven photoelectrodes. Promising candidates as efficient yet practical NIR-responsive photoelectrodes are suggested and discussed. Future outlooks on the advancement of PEC water splitting are also proposed. 相似文献
18.
Russian Chemical Bulletin - The results of studies on radiation-initiated telomerization of tetrafluoroethylene and on the properties of telomers with reactive terminal hydroxyl, amino, and silane... 相似文献
19.
The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references). 相似文献
20.
We report recent advances in the field of droplet-based microfluidics. Specifically, we highlight the unique features of such platforms for high-throughput experimentation; describe functional components that afford complex analytical processing and report on applications in synthesis, high-throughput screening, cell biology and synthetic and systems biology. Issues including the integration of high-information content detection methods, long term droplet stability and opportunities for large scale and intelligent biological experimentation are also discussed. 相似文献