首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modern syntheses of colloidal nanocrystals yield extraordinarily narrow size distributions that are believed to result from a rapid “burst of nucleation” (La Mer, JACS, 1950, 72(11), 4847–4854) followed by diffusion limited growth and size distribution focusing (Reiss, J. Chem. Phys., 1951, 19, 482). Using a combination of in situ X-ray scattering, optical absorption, and 13C nuclear magnetic resonance (NMR) spectroscopy, we monitor the kinetics of PbS solute generation, nucleation, and crystal growth from three thiourea precursors whose conversion reactivity spans a 2-fold range. In all three cases, nucleation is found to be slow and continues during >50% of the precipitation. A population balance model based on a size dependent growth law (1/r) fits the data with a single growth rate constant (kG) across all three precursors. However, the magnitude of the kG and the lack of solvent viscosity dependence indicates that the rate limiting step is not diffusion from solution to the nanoparticle surface. Several surface reaction limited mechanisms and a ligand penetration model that fits data our experiments using a single fit parameter are proposed to explain the results.

In situ X-ray scattering kinetics and population balance modeling of crystal nucleation and growth.  相似文献   

2.
In this paper we show that self-organization of colloidal PbSe and CdSe semiconductor nanocrystals with a size ratio of 0.57 leads to binary structures with a AB2 or a cuboctahedral AB13 lattice. The type of superlattice formed can be regulated by the relative concentration of both nanocrystals in the suspension.  相似文献   

3.
Solution nuclear magnetic resonance spectroscopy (NMR) is used to identify and quantify the organic capping of colloidal PbSe nanocrystals (Q-PbSe). We find that the capping consists primarily of tightly bound oleic acid ligands. Only a minor part of the ligand shell (0-5% with respect to the number of oleic acid ligands) is composed of tri- n-octylphosphine. As a result, tuning of the Q-PbSe size during synthesis is achieved by varying the oleic acid concentration. By combining the NMR results with inductively coupled plasma mass spectrometry, a complete Q-PbSe structural model of semiconductor core and organic ligands is constructed. The nanocrystals are nonstoichiometric, with a surface that is composed of lead atoms. The absence of surface selenium atoms is in accordance with an oleic acid ligand shell. NMR results on a Q-PbSe suspension, stored under ambient conditions, suggest that oxidation leads to the loss of oleic acid ligands and surface Pb atoms, forming dissolved lead oleate.  相似文献   

4.
Size-controllable monodisperse PbSe and PbSe/PbS nanocrystals (NCs) have been successfully synthesized with a solvothermal method. Octadecylamine (ODA) molecules were found effective in organizing the nanocrystals to form an ordered monolayer. It is expected that these narrow-band-gap semiconductor NCs with tunable size would have potential applications in near- and mid-IR telecommunication laser sources, electroluminescence, and solar cell materials.  相似文献   

5.
Spherical PbSe@SiO2 nanoparticles have been successfully synthesized within reverse micelles via metal alkoxide hydrolysis and condensation within a microemulsion system. These core-shell nanoparticles were characterized by transmission electron microscopy (TEM), NIR absorption spectroscopy, energy-dispersive X-ray analysis, and TEM electron diffractions. It shows that the obtained core-shell structures have a spherical shape with narrow size distribution (average size approximately 35 nm) and smooth surfaces. The size of the particles and the thickness of the shells can be controlled by manipulating the relative rates of the hydrolysis and condensation reactions of tetraethoxysilane (TEOS) within the microemulsion.  相似文献   

6.
We analyzed the interaction between chemically grafted polysaccharide layers in aqueous solutions. To fabricate such layers, an end-terminated dextran silane coupling agent was synthesized and the polydextran was grafted to oxidized silicon wafers and to silica particles. This resulted in the formation of a 28 nm thick layer (in air) and a grafted amount of 40 mg/m(2) as determined by ellipsometry. The physical properties of the grafted layer were investigated in aqueous solutions by atomic force microscope imaging and colloidal probe force measurements. Surface and friction forces were measured between one bare and one polydextran coated silica surface. A notable feature was a bridging attraction due to affinity between dextran and the silica surface. Surface interactions and friction forces were also investigated between two surfaces coated with grafted polydextran. Repulsive forces were predominant, but nevertheless a high friction force was observed. The repulsive forces were enhanced by addition of sodium dodecyl sulfate (SDS) that associates with the tethered polydextran layers. SDS also decreased the friction force. Our data suggests that energy dissipation due to shear-induced structural changes within the grafted layer is of prime importance for the high friction forces observed, in particular deformation of protrusions in the surface layer.  相似文献   

7.
Multiple CdSe and ZnSe semiconductor shells were grown on PbSe semiconductor spherical cores with monolayer control. For CdSe shell coating, we found that there was little room to further increase the quantum yields of freshly-made high-quality PbSe nanocrystals that already owned very high initial values because of their good surface status; but there was great improvement for the PbSe nanocrystals with low initial quantum yields because of the poor surface status. Nonetheless, the quantum yield for the latter case could not reach the former's value. Additional ZnSe shells on PbSe/CdSe could further increase the quantum yield and protect the nanocrystals from air oxidation. The observed phenomena in the synthesis of the PbSe/CdSe and PbSe/CdSe/ZnSe core/shell structures were explained through the carrier wave function expansion and the surface polarization.  相似文献   

8.
Synthesis and optical properties of thiol-stabilized PbS nanocrystals   总被引:1,自引:0,他引:1  
Thiol-capped water-soluble PbS nanocrystals (NCs) stabilized with 1-thioglycerol, dithioglycerol, or a mixture of 1-thioglycerol/dithioglycerol (TGL/DTG) were prepared via one-stage synthesis at room temperature. We found that NCs stabilized with a TGL/DTG mixture show efficient and stable infrared photoluminescence centered in the second "biological window" (1050-1200 nm). Under optimized conditions, full width at half-maximum of the PL emission peak was from 70 to 100 nm. PbS NCs were stable to precipitation and aggregation for the time period from 2 to 3 months when stored in the dark under room temperature. Room-temperature photoluminescence quantum efficiency of NCs was from 7 to 10%. When NCs were stored at 37 degrees C, their PL emission red-shifted, consistent with the NC growth.  相似文献   

9.
The optical properties and functionality of air-stable PbSe/PbS core-shell and PbSe/PbSexS1-x core-alloyed shell nanocrystal quantum dots (NQDs) are presented. These NQDs showed chemical robustness over months and years and band-gap tunability in the near infrared spectral regime, with a reliance on the NQD size and composition. Furthermore, these NQDs exhibit high emission quantum efficiencies of up to 65% and an exciton emission band that is narrower than that of the corresponding PbSe NQDs. In addition, the emission bands showed a peculiar energy shift with respect to the relevant absorption band, changing from a Stokes shift to an anti-Stokes shift, with an increase of the NQD diameter. The described core-shell structures and the corresponding PbSe core NQDs were used as passive Q-switches in eye-safe lasers of Er:glass, where they act as saturable absorbers. The absorber saturation investigations revealed a relatively large ground-state cross-section of absorption (sigma gs = 10(-16) - 10(-15) cm2) and a behavior of a "fast" absorber with an effective lifetime of tau eff approximately 4.0 ps is proposed. This lifetime is associated with the formation of multiple excitons at the measured pumping power. The product of sigma gs and tau eff enables sufficient Q-switching performance and tunability in the near infrared spectral regime. The amplified spontaneous emission properties of PbSe NQDs were examined under continuous illumination by a diode laser at room temperature, suitable for standard device conditions. The results revealed a relatively large gain parameter (g = 2.63 - 6.67 cm-1). The conductivity properties of PbSe NQD self-assembled solids, annealed at 200 degrees C, showed an Ohmic behavior at the measured voltages (up to 30 V), which is governed by a variable-range-hopping charge transport mechanism.  相似文献   

10.
Using extensive state-of-the-art experiments over a wide range of synthesis parameters, such as the temperature and concentrations of different reactants, we establish qualitatively different growth kinetics for ZnO nanocrystals compared to all growth kinetics of semiconductor nanocrystals, including ZnO, discussed so far in the literature. The growth rate is shown to be strongly dependent on the concentration of (OH)- in an intriguing nonmonotonic manner as well as on temperature and is almost invariably much slower than well-known and generally accepted growth mechanisms based on a diffusion-controlled Ostwald ripening process or that expected in the surface reaction controlled regime. We show that these qualitatively different results arise from the unexpected role played by a part of the reactants by inhibiting rather than facilitating the reaction; we explain this extraordinary result in terms of an effective passivating layer around the growing nanocrystals formed by a virtual capping shell of Na+ ions.  相似文献   

11.
This work is a theoretical analysis of aerosol growth in a recently developed laminar flow aerosol generator, a modification of the Sinclair-LaMer generator. The parameters which affect the aerosol size distribution are elucidated by rigorous analysis of the droplet growth kinetics and transport phenomena associated with vapor condensation on nuclei in a nonisothermal flow field. The results of the analysis are compared with available experimental data. Theory and experiment are in excellent agreement with respect to the effects of using nitrogen rather than helium as a carrier gas, and other experimentally observed characteristics are predicted.  相似文献   

12.
13.
In this paper we report an electron microscopic observation of crystal shape development when PbSe nanocrystals were synthesized using a dynamic injection technique at different temperatures in the presence of oleic acid. A two-step evolution mechanism was proposed, indicating that the shape evolution of PbSe nanocrystals is dependent on the growth time, whereas the crystalline size can be tuned by varying the growth temperature under the studied conditions. It also implies that a higher growth rate in the 111 direction compared to that in the 100 direction results in the formation of nanocubes.  相似文献   

14.
This article reports a systematic study of the seed-mediated growth of Au@Pd core-shell nanocrystals with a variety of controlled sizes and morphologies. The key to the success of this synthesis is to manipulate the reaction kinetics by tuning a set of reaction parameters, including the type and concentration of capping agent, the amount of ascorbic acid used as the reducing agent, and the injection rate used for the precursor solution. Starting from Au nanospheres of 11?nm in diameter as the seeds, Au@Pd core-shell nanocrystals with a number of morphologies, including octahedra, concave octahedra, rectangular bars, cubes, concave cubes, and dendrites, could all be obtained by simply altering the reaction rate. For the first time, it was possible to generate Au@Pd nanocrystals with concave structures on the surfaces while their sizes were kept below 20?nm. In addition, the as-prepared Au@Pd nanocubes can be used as seeds to generate Au@Pd@Au and Au@Pd@Au@Pd nanocrystals with multishelled structures.  相似文献   

15.
We demonstrate a novel approach for the large-scale, shape-controlled synthesis of one-dimensional (1D) corrugated nanoarrays of Pb(1-x)Mn(x)Se nanocrystals (0.002 < or = x < or = 0.008) through an in-situ self-assembly without using either capping polymer or ionic surfactant. The one-step-prepared 1D nanoarrays exhibit a well-defined morphology, single-crystal orientation, and clean surface without amorphous contamination. The average diameter of the 1D nanoarrays can be controlled and varied from <10 to 80 nm by finely tuning the assembly temperature and the growth time. Four growth models were suggested to explain the in-situ self-assembly processes based on the fundamental building blocks of octahedral nanocrystals by sharing [111] facets.  相似文献   

16.
Droplet size distributions of concentrated, polydisperse oil-in-water emulsions have been measured using ultra small angle neutron scattering (USANS). The mean radii calculated by fitting a model for polydisperse hard spheres with excluded volume interactions to the USANS data were consistent with those derived from electroacoustics on diluted emulsions after correction for conductance behind the shear plane. The Porod radii measured by USANS were similarly consistent with the mean surface-area-weighted radii derived from electroacoustics, irrespective of the drop concentration or polydispersity.  相似文献   

17.
It is well known that narrower particle size distributions are obtained when Aerosol MA80 is used as surfactant in emulsion polymerization compared with other surfactants. Some researchers have published hypotheses to explain this characteristic of MA80; however, it is the opinion of the authors that there are other factors that must be taken into account. This work discusses, with emphasis on the amplitude of the PSD, the effect of the type and initial concentration of surfactant (SDS and MA80) on kinetic aspects of emulsion polymerization of styrene. Similarities and differences between the polymerizations effected with the surfactants under study are discussed in terms of the physicochemical behavior of the surfactants.  相似文献   

18.
We present a surfactant-assisted solvothermal approach for the controllable synthesis of a PbS nanocrystal at low temperature (85 degrees C). Nanotubes (400 nm in length with an outer diameter of 30 nm), bundle-like long nanorods (about 5-15 mum long and an average diameter of 100 nm), nanowires (5-20 mum in length and with a diameter of 20-50 nm), short nanorods (100-300 nm in length and an axial ratio of 5-10), nanoparticles (25 nm in width with an aspect ratio of 2), and nanocubes (a short axis length of 10 nm and a long axis length of 15 nm) were successfully prepared and characterized by transmission electron microscopy, scanning electron microscopy, and powder X-ray diffraction pattern. A series of experimental results indicated that several experimental factors, such as AOT concentration, ratio of [water]/[surfactant], reaction time, and ratio of the reagents, play key roles in the final morphologies of PbS. Possible formation mechanisms of PbS nanorods and nanotubes were proposed.  相似文献   

19.
20.
We explore numerically the feasibility of using chemical patterning to control the size and polydispersity of micrometer-scale drops. The simulations suggest that it is possible to sort drops by size or wetting properties by using an array of hydrophilic stripes of different widths. We also demonstrate that monodisperse drops can be generated by exploiting the pinning of a drop on a hydrophilic stripe. Our results follow from using a lattice Boltzmann algorithm to solve the hydrodynamic equations of motion of the drops and demonstrate the applicability of this approach as a design tool for micofluidic devices with chemically patterned surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号