首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The validity of the application of the dissipative particle dynamics (DPD) method to ferromagnetic colloidal dispersions has been investigated by conducting DPD simulations for a two–dimensional system. First, the interaction between dissipative and magnetic particles has been idealized as some model potentials, and DPD simulations have been carried out using such model potentials for a two magnetic particle system. In these simulations, attention has been focused on the collision time for the two particles approaching each other and touching from an initially separated position, and such collision time has been evaluated for various cases of mass and diameter of dissipative particles and model parameters, which are included in defining the equation of motion of dissipative particles. Next, a multi–particle system of magnetic particles has been treated, and particle aggregates have been evaluated, together with the pair correlation function along an applied magnetic field direction. Such characteristics of aggregate structures have been compared with the results of Monte Carlo and Brownian dynamics simulations in order to clarify the validity of the application of the DPD method to particle dispersion systems. The present simulation results have clearly shown that DPD simulations with the model interaction potential presented here give rise to physically reasonable aggregate structures under circumstances of strong magnetic particle–particle interactions as well as a strong external magnetic field, since these aggregate structures are in good agreement with those of Monte Carlo and Brownian dynamics simulations.  相似文献   

2.
The phase transitions and the internal aggregate structures of a highly dense suspension composed of magnetic plate-like particles with a magnetic moment normal to the particle axis have been investigated by means of the Monte Carlo method. The present study considered a quasi-2D system in order to clarify the influences of the volumetric fraction of particles and the magnetic field strength on particle aggregations and phase transitions. The internal structures of particle aggregates have been discussed quantitatively in terms of pair correlation functions, orientational pair correlation functions, nematic and polar order parameters. The main results obtained here are summarized as follows. When the influence of the magnetic interaction between particles is of the same order of that of the perpendicular magnetic field strength, the particles form column-like clusters, and the internal structure of the suspension shows solid-like structures. For the case of a strong applied magnetic field, the internal structure is transformed from solid-like structures into isotropic ones. However, as the volumetric fraction increases, the particles form brick wall-like structures under the situation of a strong applied magnetic field, and the internal structure exhibits solid-like ones. The brick wall-like structures also appear for a relatively weak magnetic field applied along the in-plane direction despite a slightly smaller volumetric fraction compared with the case of the perpendicular applied magnetic field.  相似文献   

3.
The structures of suspensions comprised of magnetic and nonmagnetic particles in magnetic fields are studied using two-dimensional Monte Carlo simulations. The magnetic interaction among magnetic particles, magnetic field strength, and concentrations of both magnetic and nonmagnetic particles are considered as key influencing factors in the present work. The results show that chain-like clusters of magnetic particles are formed along the field direction. The size of the clusters increases with increasing magnetic interaction between magnetic particles, while it keeps nearly unchanged as the field strength increases. As the concentration of magnetic particles increases, both the number and size of the clusters increase. Moreover, nonmagnetic particles are found to hinder the migration of magnetic ones. As the concentration of nonmagnetic particles increases, the hindrance on migration of magnetic particles is enhanced.  相似文献   

4.
吕琰  宋涛 《中国物理 B》2013,(4):537-544
Many animal species have been proven to use the geomagnetic field for their navigation, but the biophysical mechanism of magnetoreception has remained enigmatic. In this paper, we present a special biophysical model that consists of magnetite-based and radical-pair-based mechanisms for avian magnetoreception. The amplitude of the resultant magnetic field around the magnetic particles corresponds to the geomagnetic field direction and affects the yield of singlet/triplet state products in the radical-pair reactions. Therefore, in the proposed model, the singlet/triplet state product yields are related to the geomagnetic field information for orientational detection. The resultant magnetic fields corresponding to two materials with different magnetic properties are analyzed under different geomagnetic field directions. The results show that ferromagnetic particles in organisms can provide more significant changes in singlet state products than superparam- agnetic particles, and the period of variation for the singlet state products with an included angle in the geomagnetic field is approximately 180 when the magnetic particles are ferromagnetic materials, consistent with the experimental results obtained from the avian magnetic compass. Further, the calculated results of the singlet state products in a reception plane show that the proposed model can explain the avian magnetoreception mechanism with an inclination compass.  相似文献   

5.
Structural transformations in a model ferrofluid in the absence of an external magnetic field have been theoretically studied. The results agree with well-known laboratory experiments and computer simulations in showing that, if the concentration of particles and their magnetic interaction energy are below certain critical values, most particles form separate linear chains. If these parameters exceed the critical values, most particles concentrate so as to form branched network structures. The passage from chains to network has a continuous character rather than represents a discontinuous first-order phase transition.  相似文献   

6.
The formation of dusty plasma structures has been experimentally investigated in a cylindrical dc discharge in axial magnetic fields up to 2500 G. The rotation of the dusty plasma structures about the discharge symmetry axis with a frequency depending on the magnetic field has been observed. When the field increases to 700 G, the displacement of dust particles from the axial region of the discharge to the periphery, along with the continuation of the rotation, has been observed. The kinetic temperatures of the dust particles, the diffusion coefficients, and the effective nonideality parameter have been determined for various magnetic fields. The explanation of the features in the behavior of the dust particles in the discharge in the magnetic field has been proposed on the basis of the analysis of ambipolar diffusion in the magnetized plasma. The maximum magnetic field at which the levitation of the dust particles in the discharge is possible has been estimated.  相似文献   

7.
The production method of magnetic suspension consisting of ferromagnetic particles dispersed in cedarwood oil is presented at the beginning of this article. Next, the set-up for microwaves generation using a klystron is described. The main part of this paper concerning microwave transmission and polarization during its passage in samples of the produced magnetic suspension placed in a magnetic field is based on the following parameters: induction of this field, filling factor of magnetic suspension by ferromagnetic particles, dimensions of particles, viscosity of liquid carrier, and ratio of the magnetic field changes. Conducted investigations show that microwaves are damped and polarized in these magnetic suspensions. Obtained results are discussed and observed effects are explained by ordering of ferromagnetic particles in magnetic suspension by applied magnetic field.  相似文献   

8.
左小伟  安佰灵  黄德洋  张林  王恩刚 《物理学报》2016,65(13):137401-137401
凝固界面前沿颗粒间的相互作用决定了颗粒的运动轨迹、分布和材料的性能,控制熔体中颗粒的迁移可用于材料的净化和提纯.在Cu-30%Fe合金液固两相区施加不同的强磁场条件,富Fe颗粒的分布和排列不尽相同.当无强磁场作用时,富Fe颗粒较均匀地分布在Cu熔体中;随着施加稳恒强磁场磁感应强度的增加,富Fe颗粒向远离重力方向的试样上端迁移,样品底部几乎无富Fe颗粒;而施加向下的梯度磁场作用后,富Fe颗粒沿重力方向向下迁移.结合强磁场作用下颗粒的受力情况,分析了Fe颗粒的迁移行为.不同磁场条件和不同区域的颗粒直径统计分析表明,随磁感应强度增加,Fe颗粒聚合增加,但施加梯度强磁场后颗粒的团聚又逐渐减弱,对此从影响颗粒运动的Stokes和Marangoni凝并速度进行了讨论.从能量最低的角度解释了富Fe相沿平行磁场方向的取向排列.  相似文献   

9.
General equations governing the stability of stratified fluid in a stratified porous medium in the presence of suspended particles and variable horizontal magnetic field, separately, have been derived. Assuming stratifications in density, viscosity, suspended particles number density, medium porosity, medium permeability and a magnetic field of exponential form the dispersion relations have been obtained. Systems have been found to be stable for stable stratifications and unstable for unstable stratifications. A system which was unstable in the absence of magnetic field can be completely stabilized by a magnetic field for a certain wave-number range. The behaviour of growth rates with respect to fluid viscosity, medium permeability, suspended particles number density and magnetic field has been examined analytically.  相似文献   

10.
We have investigated mainly the influences of magnetic particle–particle interactions on the orientational distribution and viscosity of a semi-dense dispersion, which is composed of rod-like particles with a magnetic moment magnetized normal to the particle axis. In addition, the influences of the magnetic field strength, shear rate, and random forces on the orientational distribution and rheological properties have been clarified. The mean field approximation has been applied to take into account magnetic interactions between rod-like particles. The basic equation of the orientational distribution function has been derived from the balance of torques and solved by the numerical analysis method. The results obtained here are summarized as follows. For a strong magnetic field, the rotational motion of the rod-like particle is restricted in a plane normal to the shearing plane since the magnetic moment of the particle is restricted in the magnetic field direction. Under circumstances of a very strong magnetic interaction between particles, the magnetic moment is strongly restricted in the magnetic field direction, so that the particle has a tendency to incline in the flow direction with the magnetic moment pointing to the magnetic field direction. For a strong shear flow, a directional characteristic of rod-like particles is enhanced, and this leads to a more significant one-peak-type distribution of the orientational distribution function. Magnetic interactions between particles do not contribute to the increase in the viscosity because the mean-field vector has only a component along the magnetic field direction.  相似文献   

11.
Distributions of particles in a suspension comprised of magnetic particles (MPs) and nonmagnetic particles (NPs) under gradient magnetic fields are vitally important for the preparation of magnetic-nonmagnetic functionally graded materials (FGMs). In the present study, the effects of magnetic field gradient, magnetic interaction between MPs and concentration of NPs on the distributions of particles in the suspension are investigated using a two-dimensional Monte Carlo simulation. The results show that a gradient distribution of MPs is formed under gradient magnetic fields and increases with increasing the field gradient. However, as the interaction between MPs increases, the distribution gradient decreases, accompanied by the formation of chain-like MP clusters. Moreover, NPs are found to hinder the translation of MPs along the field direction. As the NP concentration increases, the translation of MPs becomes difficult.  相似文献   

12.
We describe and study by small-angle X-ray scattering (SAXS) a new type of hybrid system. It is composed of a swollen lyotropic hexagonal phase into the cylinders of which solid magnetic particles of nanometric size have been incorporated. It has been found to be stable for volume fractions of particles up to 2% provided the cylinders are sufficiently large. A unidimensionnal magnetic liquid is thus realized. The structural properties of this colloidal assembly have been investigated by SAXS, and the specific features of the scattering spectra are analysed and interpreted. One of the remarkable results is the evidence of depletion interactions between the particles and the inner walls of the cylinders inside which particles are located. Received: 4 September 1997 / Revised: 14 October 1997 / Accepted: 19 November 1997  相似文献   

13.
The negative viscosity of a colloidal dispersion composed of ferromagnetic rod-like particles, which have a magnetic moment normal to the particle axis, have been investigated. A simple shear flow problem has been treated to clarify the particle orientational distribution and rheological properties of such a semi-dense dispersion, under circumstances of an external magnetic field applied in the direction normal to the shear plane of a simple shear flow. The results obtained here are summarized as follows. For the cases of a very strong magnetic field and magnetic interactions between particles, the magnetic moment of the rod-like particles is significantly restricted in the magnetic field direction, so that the particle approximately aligns in the shear flow direction. Also, the particle can easily rotate around the axis of the cluster almost freely even in a simple shear flow. Characteristic orientational properties of the particle cause negative viscosity, as in the previous study for a dilute dispersion. However, magnetic particle-particle interactions have a function to make such negative viscosity decrease.  相似文献   

14.
The scattering of charged particles in the magnetic fields of current sheets with bell-shaped and double-humped current density profiles has been studied analytically and numerically. The particle scattering processes are shown to depend significantly on the structure of the current sheet. Thus, for example, when particles are scattered in double current sheets, a regime under which the compensation of two successive jumps in particle magnetic moments can lead to a quasi-regular type of motion, instead of a chaotic one, can be maintained in the system.  相似文献   

15.
 利用线性Vlasov-Poisson方程,研究了带电粒子在磁化二份量等离子体中运动时产生的动力学极化效应及能量损失,重点分析了外磁场及等离子体中离子的极化效应对入射粒子能量损失响。数值结果表明:入射粒子的能量损失有两个峰,分别位于高速区和低速区,对应于等离子体中的电子极化效应和离子极化效应。在强磁场情况下,低速粒子的能量损失主要来自离子的极化效应;而在弱磁场情况下,高速粒子的能量损失则主要来自于电子的极化效应。  相似文献   

16.
The pair distribution function of a monodisperse magnetic fluid simulated by a liquid made of dipolar hard spheres with constant magnetic moments is calculated. The anisotropy of the pair distribution function and the related structure factor of scattering in a dc uniform magnetic field are studied. The calculation is performed by diagrammatic expansion in the volume concentration of particles and the interparticle magnetic-dipole interaction intensity using a thermodynamic perturbation theory. Limitation by three-particle diagrams makes it possible to apply the results obtained to magnetic fluids with a moderate concentration. Even for low-concentration and weakly nonideal magnetic fluids, the anisotropic interparticle magnetic-dipole correlations in a magnetic field lead to the repulsion of particles in the direction normal to the field and to the formation of particle dimers along the field.  相似文献   

17.
The dynamic analysis of a three-layered symmetric sandwich beam with magnetorheological elastomer (MRE) embedded viscoelastic core and conductive skins subjected to a periodic axial load have been carried out under various boundary conditions. As the skins of the sandwich beam are conductive, magnetic loads are applied to the skins during vibration. Due to the field-dependent shear modulus of MRE material, the stiffness of the MRE embedded sandwich beam can be changed by the application of magnetic fields. Using extended Hamilton’s principle along with generalized Galarkin’s method the governing equation of motion has been derived. The free vibration analysis of the system has been carried out and the results are compared with the published experimental and analytical results which are found to be in good agreement. The parametric instability regions of the sandwich beam have been determined for various boundary conditions. Here, recently developed magnetorheological elastomer based on natural rubber containing iron particles and carbon blacks have been used. The effects of magnetic field, length of MRE patch, core thickness, percentage of iron particles and carbon blacks on the regions of parametric instability for first three modes of vibration have been studied. These results have been compared with the parametric instability regions of the sandwich beam with fully viscoelastic core to show the passive and active vibration reduction of these structures using MRE and magnetic field. Also, the results are compared with those obtained using higher order theory.  相似文献   

18.
The dynamics of magnetization oscillations with a considerable amplitude and a radial symmetry in small ferromagnetic particles in the form of a thin disk with a magnetic vortex has been investigated. The collective variables that describe radially symmetric oscillations of the magnetization dynamics for particles in the vortex state are introduced, and the dependence of the particle energy is studied as a function of these variables. The analytical expressions describing the frequency of magnetization oscillations with a radial symmetry, including nonlinear oscillations, are derived using the collective variables. It is shown that the presence of a magnetic field oriented perpendicular to the particle plane reduces the oscillation frequency and can lead to hybridization of this mode with other modes of spin oscillations, including the mode of translational oscillations of the vortex core. The soliton solutions describing the propagation of collective oscillations along the chain of magnetic particles are found.  相似文献   

19.
The results of the experimental investigation into the magnetic hysteresis of systems of superparamagnetic ferrihydrite nanoparticles of bacterial origin have been presented. The hysteresis properties of these objects are determined by the presence of an uncompensated magnetic moment in antiferromagnetic nanoparticles. It has been revealed that, under the conditions of cooling in an external magnetic field, there is a shift of the hysteresis loop with respect to the origin of the coordinates. These features are associated with the exchange coupling of the uncompensated magnetic moment and the antiferromagnetic “core” of the particles, as well as with processes similar to those responsible for the behavior of minor hysteresis loops due to strong local anisotropy fields of the ferrihydrite nanoparticles.  相似文献   

20.
The interaction of the positronium with a magnetic field is investigated. The high-precision formulae for probabilities of ortho-and parastates of the positronium in the magnetic field are calculated with allowance for the difference between the magnetic moments of electron and positron in positronium and those of free particles. The results of these calculations are used for setting up the PALM experiment dedicated to the parapositronium lifetime measurement in vacuum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号