首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
本文对含氟丙烯酸酯(FMA)与甲基丙烯酸丁酯(BMA)的RAFT细乳液共聚合及动力学进行了研究, 计算得到了FMA与BMA的竞聚率并制备出具有统计结构的含氟共聚物乳液.  相似文献   

2.
原子转移自由基聚合[1],可同时适用于非极性单体和极性单体,如苯乙烯、二烯烃类和(甲基)丙烯酸酯、丙烯腈类单体[1~3],这是传统的活性聚合如阴离子聚合和基团转移聚合所不及的;可以用于制备包括无规、嵌段、星形与高支化物在内的诸多结构清晰的高分子化合物...  相似文献   

3.
Abstract

Copolymers involving styrene and homologues of alkyl methacrylates (viz., methyl, ethyl, and butyl methacrylates) were synthesized at 60°C by employing a mixture of n‐butylamine and carbontetrachloride as charge transfer (CT) initiators in dimethyl sulphoxide medium. The CT complex was characterized by UV spectroscopy while the respective copolymers were characterized by employing infrared (IR) and 1H NMR spectroscopy. The copolymer compositions were determined by using 1H NMR spectroscopy and the reactivity ratios were computed by Fineman–Ross (F–R) and Kelen–Tudos (K–T) methods. The reactivity ratios of Sty‐MMA and Sty‐EMA copolymers indicate that higher level of styrene is incorporated in the copolymer. On the other hand the Sty‐BMA system exhibits different behavior. The higher value of r 2 is obtained denoting that BMA is more active than styrene and hence, more BMA is present in the copolymer chain. In Sty‐MMA and Sty‐BMA systems, the product of r 1 and r 2 is greater than 1, representing the formation of high degree of random copolymers. However, in the case of Sty‐EMA, the product of r 1 and r 2 is less than 1 indicating the formation of alternating copolymer.  相似文献   

4.
甲基丙烯酸丁酯和苯乙烯的原子转移自由基共聚   总被引:4,自引:0,他引:4  
研究了甲基丙烯酸丁酯(BMA)和苯乙烯(S)这两种不同极性单体的原子转移自由基嵌段共聚和无规共聚,得到了实测分子量与理论分子量相近,分子量分布较窄的嵌段共聚物和无规共聚物.聚合过程中分子量和单体转化率成比例增加,多分散性指数变化不大.用1H NMR法测定共聚组成,Kelen Tudos法计算竞聚率.得到rSt=091,rBMA=032.  相似文献   

5.
The synthesis of poly(VDF‐co‐TFMA) copolymers (where VDF and TFMA stand for vinylidene fluoride and α‐trifluoromethacrylic acid, respectively) by iodine transfer polymerization without any surfactant is presented. First, the synthesis and the control of the copolymerization of VDF and TFMA were investigated in the presence of two chain transfer agents, 1‐perfluorohexyl iodide (C6F13I) and 1,4‐diodoperfluorobutane (IC4F8I). TFMA monomer was incorporated in the copolymer in good yields. Moreover, the molecular weights of the resulting poly(VDF‐co‐TFMA) copolymers were in good agreement with the theoretical values for feed of TFMA/VDF ratios that ranged from 50/50 to 0/100 mol %, showing that TFMA does not disturb the controlled radical polymerization of VDF. The microstructures of the produced copolymers were characterized by 1H and 19F NMR to assess the amount of each comonomer, and the molecular weights and the end‐groups of the copolymers. The results on the control of the copolymerization were compared to those obtained with and without the presences of TFMA and surfactant. The addition of a low amount of TFMA improved the control of the polymerization of VDF without using any surfactant. Also, the size of particles, assessed by light scattering, was smaller than 200 nm. The addition of TFMA in low proportions, that is, 5 to 10 mol %, enabled us to stabilize the particle size and to decrease the size by one order of magnitude. The emulsifying behavior of TFMA (in low amount in the copolymer, that is, <10 mol %) was similar to those achieved when a surfactant was added. Indeed, neither sedimentation nor destabilization was observed after several days. The reactivity ratios for rTFMA and rVDF were 0 and 1.6 at 80 °C, respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4710–4722, 2009  相似文献   

6.
用Fimeman-Ross法处理数据,测定了乙烯基聚硅氧烷(SV)与苯乙烯(ST)、甲基丙烯酸甲酯(MMA)和甲基丙烯酸正丁酯(n-BMA)的共聚反应的竞聚率,结果为rST=1.45和rSV=1.08,rMMA=0.78和rSV=2.01,rn-BMA=0.46和rSV=3.49.以含SV的乳液作为种子进行烯类单体的乳液聚合,单体和SV共聚反应对复合粒子的形态有很大影响。  相似文献   

7.
丙烯酸酯和甲基丙烯酸酯基团转移共聚研究   总被引:1,自引:0,他引:1  
研究了三种丙烯酸酯分别和四种甲基丙烯酸酯的基团转移共聚,用1H NMR法测定共聚物组成,扩展的Kelen Tudos法测定竞聚率,结果为γMA=923、γMMA=006;γEA=1415、γMMA=001;γBA=751、γMMA=002;γMA=1441、γEMA=001;γMA=1396、γBMA=023;γMA=866、γi BMA=008,表明基团转移聚合同阴离子聚合有明显的相似之处.  相似文献   

8.
核磁共振法测定苯乙烯和甲基丙烯酸正丁酯竞聚率的研究   总被引:6,自引:0,他引:6  
以苯乙烯(St)-甲基丙烯酸正丁酯(BMA)共聚体系为研究对象,在共聚单体组成敏感点附近做重复实验,进行了40、60、80、100,120、140℃下的共聚合,用NMR方法测定共聚物的组成,用Mayo-Lewis微分组成方程的误差变量法计算竞聚率,同时给出竞聚率的95%可信椭圆区间.并根据竟聚率对温度的依赖关系得到一组合理的竞聚率值.  相似文献   

9.
Diblock copolymers containing polystyrene(PSt) and polybutyl methacrylate(PBMA) segments and random copolymer of styrene (St) and butyl methacrylate(BMA) have been prepared by atom transfer radical polymerization (ATRP).Diblock copolymers of BMA and St with predetermined molecular weight(1&#215;10^4-6.5&#215;10^4) and narrower molecular weight distribution(1.25-1.5) were obtained.The random copolymer compositions were determined by ^1HNMR spectroscopy and the reactivity ratios were evaluated by the extended Kelen-Tudos method to be YSt=0.91,YBMA=0.32.  相似文献   

10.
丙烯腈和(甲基)丙烯酸酯基团转移共聚合的竞聚率   总被引:4,自引:0,他引:4  
研究了丙烯腈(AN)和甲基丙烯酸甲酯(MMA)、乙酯(EMA)、丁酯(BMA)、丙烯酸丁酯(BA)和顺丁烯二酸二丁酯(DBM)等5种酯类单体的基团转移无规共聚.用Kelen Tudus法测定了二元共聚体系的竞聚率,分别为rAN=1022、rMMA=077、rAN=568、rEMA=016、rAN=859、rBMA=009、rAN=408、rBA=006;rAN=138,rDBM=006.发现竞聚率,单体组分对聚合速率的影响等都和阴离子共聚类似.  相似文献   

11.
2-Hydroxypropyl methacrylate (2-HPMA) has been copolym-erized with ethyl methacrylate (EMA), n-butyl methacrylate (BMA), and 2-ethylhexyl methacrylate (EHMA) in bulk at 60°C using benzoyl peroxide as initiator. The copolymer composition has been determined from the hydroxyl content. The reactivity ratios have been calculated by the Yezrielev, Brokhina, and Raskin method. For copolymerization of 2-HPMA (M1) with EMA (M2), the reactivity ratios are r1 = 1.807 ± 0.032 and r2 = 0.245 ± 0.021; with BMA (M2) they are n = 2.378 ± 0.001 and r2 = 0.19 ± 0.01; and with EHMA the values are r1 = 4.370 ± 0.048 and r2 = 0.103 ± 0.006. Since reactivity ratios are the measure of distribution of monomer units in copolymer chain, the values obtained are compared and discussed. This enables us to choose a suitable copolymer for synthesizing thermoset acrylic polymers, which are obtained from cross-linking of hydroxy functional groups of HPMA units, for specific end-uses.  相似文献   

12.
Radical copolymerizations of electron‐deficient 2‐trifluoromethylacrylic (TFMA) monomers, such as 2‐trifluoromethylacrylic acid and t‐butyl 2‐trifluoromethylacrylate (TBTFMA), with electron‐rich norbornene derivatives and vinyl ethers with 2,2′‐azobisisobutyronitrile as the initiator were investigated in detail through the analysis of the kinetics in situ with 1H NMR and through the determination of the monomer reactivity ratios. The norbornene derivatives used in this study included bicyclo[2.2.1]hept‐2‐ene (norbornene) and 5‐(2‐trifluoromethyl‐1,1,1‐trifluoro‐2‐hydroxylpropyl)‐2‐norbornene. The vinyl ether monomers were ethyl vinyl ether, t‐butyl vinyl ether, and 3,4‐dihydro‐2‐H‐pyran. Vinylene carbonate was found to copolymerize with TBTFMA. Although none of the monomers underwent radical homopolymerization under normal conditions, they copolymerized readily, producing a copolymer containing 60–70 mol % TFMA. The copolymerization of the TFMA monomer with norbornenes and vinyl ethers deviated from the terminal model and could be described by the penultimate model. The copolymers of TFMA reported in this article were evaluated as chemical amplification resist polymers for the emerging field of 157‐nm lithography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1478–1505, 2004  相似文献   

13.
以甲基丙烯酸三氟乙酯(TFMA)、苯乙烯(St)和丙烯酸丁酯(BA)为共聚单体,在十二烷基硫酸钠(SDS)/磺酸盐型阴离子氟表面活性剂(S100)/辛基苯基聚氧乙烯醚(OP-10)组成的乳化体系中,采用预聚物和十六醇(HDL)共同组成的复合助稳定剂,对细乳液聚合制备St/BA/TFMA三元共聚物的过程进行了研究.通过F...  相似文献   

14.
Copolymerizations of methyl methacrylate (MMA) and butyl methacrylate (BMA) with vinyltriacetoxysilane (VTAS) have been carried out in bulk at 70°. The compositions of the copolymers were determined from their silicon contents; the reactivity ratios were calculated by the Kelen-Tüdo&#x030B;s method. For MMA/VTAS, r1 = 7.75 ± 0.31 and for BMA/VTAS, r1 = 4.62 ± 0.15; in both systems, r2 is zero, indicating that VTAS does not homopolymerize under the experimental conditions. The influence of the silicon comonomer on properties of the copolymers, such as solubility annd thermal behaviour, was studied.  相似文献   

15.
丙烯腈和甲基丙烯酸酯基团转移共聚的竞聚率邹友思,郭金全,兰涛,戴李宗,潘容华(厦门大学化工系,厦门,361005)关键词基团转移共聚.竞聚率.丙烯腈.甲基丙烯酸酯近年来对基团转移共聚竞聚率的研究较活跃[1~3],一般认为甲基丙烯酸酯和丙烯酸酯两类单体...  相似文献   

16.
2-Hydroxypropyl methacrylate (2 HPMA) has been copolym-erized with ethyl methacrylate (EMA), n-butyl methacrylate (BMA), and 2-ethylhexyl methacrylate (EHMA) in bulk at 60°C using benzoyl peroxide as initiator. The copolymer composition has been determined from the hydroxyl content. The reactivity ratios have been calculated by the YBR method. For copolymerization of 2-HPMA (M1) with EMA (M2), the reactivity ratios are: r1=1.807 ± 0.032, r2=0.245 ± 0.021; with BMA (M2) they are r1=2.378 ± 0.001, r2=0.19 ± 0.01; and with EHMA the values are r1=4.370 ± 0.048, r2=0.103 ± 0.006. Since the reactivity ratios are the measure of distribution of monomer units in a copolymer chain, the values obtained are compared and discussed. This enables us to choose a suitable copolymer for synthesizing thermoset acrylic polymers, which are obtained from cross-linking of hydroxy functional groups of HPMA units, for specific end uses.  相似文献   

17.
<正> 对氯甲基苯乙烯(p-CMS)是合成功能高分子的一个非常有用的起始单体,利用它的均聚以及与其它烯类单体的共聚反应,可制得含活性基团的高分子材料。但以往对该单体的聚合及共聚研究,较多的是以邻、间、对位氯甲基取代苯乙烯的混合物作为研究对象。本文采用纯对氯甲基苯乙烯,在开展对其基本性质、均聚反应机理研究的同  相似文献   

18.
The reactivity ratios for the bulk free‐radical copolymerization of n‐butyl acrylate (BA)/n‐butyl methacrylate (BMA) are estimated at 80 °C. By performing a series of low conversion runs including replicate runs, the reactivity ratios are estimated as rBA = 0.460 and rBMA = 2.008. Runs to high conversions are then conducted at three different feed compositions (fBMA = 0.2, 0.5, and 0.8) to validate the reactivity ratios. The composition data from the high conversion experiments show good agreement with the estimated reactivity ratios in the integrated form of the Mayo–Lewis model. The molecular weight, gel content, and glass transition temperature of BA/BMA copolymers are also determined.

  相似文献   


19.
A novel fluorinated amphiphilic copolymer P(HFMA)-g-P(SPEG) was synthesized. The interactions between P(HFMA)-g-P(SPEG) and bovine serum albumin (BSA) were studied by synchronous fluorescence and intrinsic fluorescence spectroscopy. It was concluded through synchronous fluorescence that P(HFMA)-g-P(SPEG) mainly bound to tryptophan residues of BSA. Intrinsic fluorescence results revealed that BSA and P(HFMA)-g-P(SPEG) had strong interactions. The mechanism of quenching belonged to dynamic quenching and the main sort of binding force was hydrophobic force. The hydrophobic interaction between P(HFMA)-g-P(SPEG) and BSA was conformed by micropolarity and TEM photographs.  相似文献   

20.
Copolymers of isobutyl methacrylate (i‐BMA) and lauryl methacrylate (LMA) were prepared by free‐radical solution copolymerizations at 70 °C with azobisisobutyronitrile (AIBN) as an initiator. The synthesis of these copolymers was investigated over a wide composition range both at low and high conversion levels. Copolymer compositions were determined from the %C, %H, and %O contents of copolymer by elemental analysis. Monomer reactivity ratios were estimated by analyzing composition data with nonlinear least‐squares (NLLS) models based on Marquardt optimization and van Herk methods. The point estimates, 95% individual confidence intervals and 95% joint confidence intervals are obtained from differential and integral approaches. Even though no explicit integral form for penultimate unit model (PUM) is available, a numerical approach is developed for integral estimation of reactivity ratios from PUM. A simulator program was developed which upon coupling of experimental data, NLLS analysis, and D‐optimal criteria calculates the best optimized values of monomer reactivity ratios and monomer feed compositions in a sequential and iterative order for terminal and penultimate unit models. Moreover, the simulator has the capibilities to calculate all features of van Herk method, maximum compositional drift in each monomer feed composition, and data reconciliation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 112–129, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号