首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
因物理贡献突出而被载入史册的法拉第,在他44年科学研究活动所产生的一百多项发明中,虽然在化学方面的研究并不广泛,但所获得的成果却是极其重要的。他开创性地研究了钝化现象,第一个发现了苯,并研究了苯的性质,第一个得到了液态氯,并发现了为电化学奠定理论基础的电解定律。在迈克尔.法拉第离开143年后的今天,以他的名字命名的"法拉第常数""法拉第定律"却依然被世人铭记。  相似文献   

2.
濮江  张玲 《化学教育》2010,31(3):98-100
因物理贡献突出而被载入史册的法拉第,在他44年科学研究活动所产生的一百多项发明中,虽然在化学方面的研究并不广泛,但所获得的成果却是极其重要的。他开创性地研究了钝化现象,第一个发现了苯,并研究了苯的性质,第一个得到了液态氯,并发现了为电化学奠定理论基础的电解定律。在迈克尔·法拉第离开143年后的今天,以他的名字命名的“法拉第常数”“法拉第定律”却依然被世人铭记。  相似文献   

3.
张清建 《大学化学》1991,6(6):54-57
法拉第(Faraday,Michael)是英国物理学家,化学家、生于1791年9月22日,今年是他诞辰200周年。他在物理学方面发现了电磁感应现象和光与磁的基本共系,创立了现代电磁场的基本概念;象在化学方面,他也成就卓著,得出了电解的基本定律,为电化学奠定了基础。在此发表张清建同志的文章,作为对法拉第诞辰200周年的纪念。  相似文献   

4.
吴祺 《化学教育》2002,23(4):47-48
我们缅怀法拉第,不仅因为他的发现引起了物理学革命和电气化时代的到来,同时他在化学领域里也做出了许多不可磨灭的重要贡献。  相似文献   

5.
CO_2还原是一种解决温室效应以及能源短缺问题的有效方式.目前对于水溶液体系中的CO_2还原,主要有光催化、电催化以及光电催化等方法,其中还原CO_2法可在室温下进行,并较易实现大规模应用.由于金属电极在CO_2电催化还原过程中表现较高电流密度和催化性能,使得目前研究的热点集中于金属电极的修饰改性.金属Cu与H2,CO结合能力适中,并且对生成碳氢化合物具有较好的催化性能,因此其在催化CO_2还原中具有较大潜力.以往对于Cu的研究主要集中在表面修饰、调控表面结构以及制备合金等方向,其中对金属进行氧化后再还原的处理也是提高其催化活性的一种有效手段.氧化后还原得到的铜具有较大的粗糙度,且暴露的活性位点更多,对CO_2还原具有较好的催化活性.我们对铜箔在空气氛围下、300oC焙烧5 h,然后恒电位还原,再进行过渡金属Ni、Zn、Au的修饰,研究所得样品电催化还原CO_2性能.电极的表面形貌用扫描电镜表征,CO_2还原的液相和气相产物分别用核磁和在线气相色谱进行检测.修饰后电极的形貌没有发生太大变化,仍具有十分粗糙的表面结构.通过线性扫描伏安曲线可以看出,修饰Zn、Au后电流密度较未修饰前有明显增加,但是由于CO_2还原过程中不可避免地伴随析氢副反应,因此,我们通过计算产物的法拉第效率来表征修饰后的电极对产物选择性的改变:未修饰时,在-1.2至-1.6 V均可检测到甲酸的生成,电位负于-1.4 V时可以检测到乙醇和正丙醇.Ni的修饰明显提高了甲酸的法拉第效率,也促进了正丙醇的生成.-1.3 V时甲酸的法拉第效率为26.0%,-1.5 V时液相产物的法拉第效率为34.3%.在线气相色谱结果发现,Ni的修饰也明显提高了CO的法拉第效率,在-1.4 V下,CO的法拉第效率为44.6%.这可能是由于Ni(r=0.1246 nm)的原子半径比Cu(r=0.1278 nm)更小,因此Ni的修饰会使Cu发生晶格收缩、导致d带中心下移而降低了CO的结合能,从而更易生成CO和HCOOH;而修饰Ni后对CO_2还原产物正丙醇的提高可能是由于Ni的引入促进了C–C键的形成.修饰Zn后,甲酸的产率明显下降,在-1.6 V下甲酸的法拉第效率只有14.8%,但是乙醇与正丙醇的法拉第效率分别为1.6%与2.0%,相较于未修饰的电极略有提高.修饰Au后,液相产物甲酸及醇类的法拉第效率明显下降,在-1.5 V下,甲酸的法拉第效率只有7.9%,且只检测到少量的乙醇,未检测到正丙醇的生成,这可能与Au修饰后的电极对CO_2还原中间体CO的吸附较弱有关,生成的CO中间体更易从表面脱附,而难以被进一步还原.  相似文献   

6.
CO2还原是一种解决温室效应以及能源短缺问题的有效方式.目前对于水溶液体系中的CO2还原,主要有光催化、电催化以及光电催化等方法,其中还原CO2法可在室温下进行,并较易实现大规模应用.由于金属电极在CO2电催化还原过程中表现较高电流密度和催化性能,使得目前研究的热点集中于金属电极的修饰改性.金属Cu与H2, CO结合能力适中,并且对生成碳氢化合物具有较好的催化性能,因此其在催化CO2还原中具有较大潜力.以往对于Cu的研究主要集中在表面修饰、调控表面结构以及制备合金等方向,其中对金属进行氧化后再还原的处理也是提高其催化活性的一种有效手段.氧化后还原得到的铜具有较大的粗糙度,且暴露的活性位点更多,对CO2还原具有较好的催化活性.我们对铜箔在空气氛围下、300oC焙烧5 h,然后恒电位还原,再进行过渡金属Ni、Zn、Au的修饰,研究所得样品电催化还原CO2性能.电极的表面形貌用扫描电镜表征, CO2还原的液相和气相产物分别用核磁和在线气相色谱进行检测.
  修饰后电极的形貌没有发生太大变化,仍具有十分粗糙的表面结构.通过线性扫描伏安曲线可以看出,修饰Zn、Au后电流密度较未修饰前有明显增加,但是由于CO2还原过程中不可避免地伴随析氢副反应,因此,我们通过计算产物的法拉第效率来表征修饰后的电极对产物选择性的改变:未修饰时,在?1.2至?1.6 V均可检测到甲酸的生成,电位负于?1.4 V时可以检测到乙醇和正丙醇. Ni的修饰明显提高了甲酸的法拉第效率,也促进了正丙醇的生成.?1.3 V时甲酸的法拉第效率为26.0%,?1.5 V时液相产物的法拉第效率为34.3%.在线气相色谱结果发现, Ni的修饰也明显提高了CO的法拉第效率,在?1.4 V下, CO的法拉第效率为44.6%.这可能是由于Ni (r =0.1246 nm)的原子半径比Cu (r =0.1278 nm)更小,因此Ni的修饰会使Cu发生晶格收缩、导致d带中心下移而降低了CO的结合能,从而更易生成CO和HCOOH;而修饰Ni后对CO2还原产物正丙醇的提高可能是由于Ni的引入促进了C–C键的形成.修饰Zn后,甲酸的产率明显下降,在?1.6 V下甲酸的法拉第效率只有14.8%,但是乙醇与正丙醇的法拉第效率分别为1.6%与2.0%,相较于未修饰的电极略有提高.修饰Au后,液相产物甲酸及醇类的法拉第效率明显下降,在?1.5 V下,甲酸的法拉第效率只有7.9%,且只检测到少量的乙醇,未检测到正丙醇的生成,这可能与Au修饰后的电极对CO2还原中间体CO的吸附较弱有关,生成的CO中间体更易从表面脱附,而难以被进一步还原.  相似文献   

7.
作为最重要的还原产品,甲酸是 CO2还原中非常有价值的液体燃料.已有研究报道, Sn类金属电极对甲酸生成有很好的催化活性,所用电解液均为 KHCO3溶液(0.5 mol/L),但多数研究没有对其电解液条件的影响给出清晰解释.一般而言,电解液 pH值会影响 H2O和 CO2还原的电极电势,酸性环境有利于氢析出,碱性环境则不利于甲酸形成.在中性偏碱性环境, CO2电解可以提供维持氧化物稳定性的可能性.同时,电解质浓度也极大地影响甲酸形成.研究表明,当在固定床反应器中使用 Sn颗粒电极,在 KHCO3溶液(0.5 mol/L)中甲酸的法拉第效率比 K2CO3溶液(0.1 mol/L)的法拉第效率更大.我们研究组通过简单的水热自组装法成功制备了一种纳米结构 SnO2催化剂.其中 SnO2-50纳米催化剂由三维多级结构组成,为纳米颗粒和微米球的聚集体,其中含有直径为500 nm?1μm的高度多孔结构.该催化剂负载气体扩散电极用于 CO2电化学还原,表现出优异的 CO2还原催化活性和甲酸选择性.与其他文献报道相比,该电极具有明显的低过电位(?0.56 V vs. SHE).经研究发现,这与甲酸形成由传质和电荷传递过程控制有关,同时 CO2还原强烈依赖于电解液条件.此外,催化剂的电化学性能和甲酸选择性强烈依赖于电解液浓度.在0.5 mol/L KHCO3电解液中,当电解液浓度为0.1?0.5 mol/L时,催化性能随电解液浓度增加而提高,同时在电解液浓度为0.5 mol/L时催化性能达到最佳,获得56%的甲酸法拉第效率,这主要是由于 HCO3?直接参与反应的结果.在电解液浓度较低时,甲酸的形成由传质控制,而在电解液浓度较高时,甲酸的形成则由电荷传递控制.
  同时我们发现在形成甲酸过程中,电解液 pH值对 CO2电化学还原过程有很大影响.为了研究电解液pH值影响,重点考察了pH值分别为6,7,8.3和9时的电位值,其原因是酸性过高有利于氢气形成,碱度过高不利于甲酸形成.结果表明,pH =8.3的电解液为 CO2还原的最佳电解液条件.此外,在最负的电势下,电解液pH=8.3时,阴极电流密度比其他电解液都大,几乎是pH=6的电解液的2倍.此时在中性偏碱性环境下, CO2还原可以提供维持氧化物稳定性的可能性.当电解液 pH增加到9.0时,甲酸产量及法拉第效率略有下降,可能是碱性环境不利于甲酸形成.
  同时,对 SnO2-50纳米催化剂经28 h电解后的甲酸法拉第效率的衰减机制进行了深入研究.结果表明,随着电解时间延长,甲酸法拉第效率衰减.电解时间为1?28 h时,法拉第效率和甲酸产量均保持平稳下降趋势,28 h后法拉第效率由初始的56%降至24%.有文献报道,甲酸法拉第效率随电解时间的改变主要是由于阳极上甲酸的氧化或阴极上杂质的污染.为了证明阴极电解后的状态,我们对 SnO2-50/GDL阴极电解前后的 XPS谱进行了分析.结果发现,法拉第效率的下降是由于痕量氟离子沉积到 SnO2-50/GDL电极表面,这些痕量氟离子可能来自反应槽,阻碍电极表面 CO2电化学还原为甲酸.  相似文献   

8.
作为最重要的还原产品,甲酸是CO_2还原中非常有价值的液体燃料.已有研究报道,Sn类金属电极对甲酸生成有很好的催化活性,所用电解液均为KHCO_3溶液(0.5 mol/L),但多数研究没有对其电解液条件的影响给出清晰解释.一般而言,电解液pH值会影响H2O和CO_2还原的电极电势,酸性环境有利于氢析出,碱性环境则不利于甲酸形成.在中性偏碱性环境,CO_2电解可以提供维持氧化物稳定性的可能性.同时,电解质浓度也极大地影响甲酸形成.研究表明,当在固定床反应器中使用Sn颗粒电极,在KHCO_3溶液(0.5 mol/L)中甲酸的法拉第效率比K_2CO_3溶液(0.1 mol/L)的法拉第效率更大.我们研究组通过简单的水热自组装法成功制备了一种纳米结构SnO_2催化剂.其中SnO_2-50纳米催化剂由三维多级结构组成,为纳米颗粒和微米球的聚集体,其中含有直径为500 nm-1μm的高度多孔结构.该催化剂负载气体扩散电极用于CO_2电化学还原,表现出优异的CO_2还原催化活性和甲酸选择性.与其他文献报道相比,该电极具有明显的低过电位(-0.56 V vs.SHE).经研究发现,这与甲酸形成由传质和电荷传递过程控制有关,同时CO_2还原强烈依赖于电解液条件.此外,催化剂的电化学性能和甲酸选择性强烈依赖于电解液浓度.在0.5 mol/L KHCO_3电解液中,当电解液浓度为0.1-0.5mol/L时,催化性能随电解液浓度增加而提高,同时在电解液浓度为0.5 mol/L时催化性能达到最佳,获得56%的甲酸法拉第效率,这主要是由于HCO3-直接参与反应的结果.在电解液浓度较低时,甲酸的形成由传质控制,而在电解液浓度较高时,甲酸的形成则由电荷传递控制.同时我们发现在形成甲酸过程中,电解液pH值对CO_2电化学还原过程有很大影响.为了研究电解液pH值影响,重点考察了pH值分别为6,7,8.3和9时的电位值,其原因是酸性过高有利于氢气形成,碱度过高不利于甲酸形成.结果表明,pH=8.3的电解液为CO_2还原的最佳电解液条件.此外,在最负的电势下,电解液pH=8.3时,阴极电流密度比其他电解液都大,几乎是pH=6的电解液的2倍.此时在中性偏碱性环境下,CO_2还原可以提供维持氧化物稳定性的可能性.当电解液pH增加到9.0时,甲酸产量及法拉第效率略有下降,可能是碱性环境不利于甲酸形成.同时,对SnO_2-50纳米催化剂经28 h电解后的甲酸法拉第效率的衰减机制进行了深入研究.结果表明,随着电解时间延长,甲酸法拉第效率衰减.电解时间为1-28 h时,法拉第效率和甲酸产量均保持平稳下降趋势,28 h后法拉第效率由初始的56%降至24%.有文献报道,甲酸法拉第效率随电解时间的改变主要是由于阳极上甲酸的氧化或阴极上杂质的污染.为了证明阴极电解后的状态,我们对SnO_2-50/GDL阴极电解前后的XPS谱进行了分析.结果发现,法拉第效率的下降是由于痕量氟离子沉积到SnO_2-50/GDL电极表面,这些痕量氟离子可能来自反应槽,阻碍电极表面CO_2电化学还原为甲酸.  相似文献   

9.
常用的脉冲技术,如阶梯伏安法、微分脉冲伏安法、方波伏安法等,都是利用电容电流的衰减比法拉第电流快得多的特点,通过延时,在脉冲后期采样.其共同缺点是损失一部分法拉第电流,而且由于延时,扫描速率也很难提高.本文首次提出一种新型常规二脉冲叠加的四阶跃伏安法,在每个脉冲周期中,电位都回到初始电位,通过在4个相互反对称电位阶跃上采样电流的差分和叠加组合,使正反向脉冲引起的电容电流相互抵消,不需要通过较长的延时而牺牲法拉第电流,从而可提高扫描速率和灵敏度.这种新的脉冲扫描技术同时具有常规脉冲和微分脉冲伏安法的特点,灵敏度和扫描速率均优于微分脉冲伏安法,并适合于吸附体系和固体电极的研究.  相似文献   

10.
由于热分解法制备Bi, Al∶LaDyIG薄膜工艺中采用分层旋覆工艺而导致多层膜的形成, 用耦合法拉第模型对多层膜的磁光效应进行计算, 发现了近紫外和蓝绿波段法拉第增强材料. 由计算结果可知,材料在300~550 nm波长范围具有极强的法拉第效应,经过配方优化, 实验上成功制备出该材料. 这极有利于短波长高密度磁光记录和微波法拉第器件性能的改善.  相似文献   

11.
黎四方 《化学通报》1993,(2):14-16,51
催化剂活性的非法拉第电化学修饰是最近才出现的新技术。与电催化不同,它不受法拉第定律限制。本文综述了这一方面的研究现状,探讨了其经济性和应用前景。  相似文献   

12.
赵灵芝 《化学通报》2015,78(1):23-28
交流阻抗法作为一种新型的无标记、全程动态、实时分析方法已在细胞研究中得到了广泛应用。本文综述了基于交流阻抗法进行细胞分析的研究新进展,重点对非法拉第阻抗谱法和法拉第阻抗谱法用于细胞分析的原理及应用进行了总结,主要包括交流阻抗法在细胞形态、细胞生长、细胞增殖、细胞凋亡以及作用于细胞的药效和毒性研究中的应用,并对其发展趋势进行了展望。  相似文献   

13.
交流阻抗法作为一种新型的无标记、全程动态、实时分析方法已在细胞研究中得到了广泛应用。本文综述了基于交流阻抗法进行细胞分析的研究新进展,重点对非法拉第阻抗谱法和法拉第阻抗谱法用于细胞分析的原理及应用进行了总结,主要包括交流阻抗法在细胞形态、细胞生长、细胞增殖、细胞凋亡以及作用于细胞的药效和毒性研究中的应用,并对其发展趋势进行了展望。  相似文献   

14.
法拉第定律与反应进度   总被引:2,自引:0,他引:2  
郭子成 《大学化学》1998,13(1):22-24
法拉第定律与反应进度郭子成(河北科技大学化工系石家庄050018)法拉第定律对电化学的发展起了很大的作用。以前的一些教科书[1,2]在介绍法拉第定律时以Q=nF(1)作为其数学表达式。式中Q是通入的电量,n是在电极上发生化学反应的物质的当量数,F是法...  相似文献   

15.
邢思阳  于飞  马杰 《应用化学》2023,(9):1215-1232
电容去离子(Capacitive deionization,CDI)作为一种新兴的水淡化和离子分离方法,由于其离子选择性高、水回收率高和能耗低等优点受到广泛关注。与传统的基于碳电极的CDI相比,新兴的法拉第电极通过离子捕获的法拉第反应,提供了使得CDI的脱盐性能大幅提升的独特机会。而过渡金属基电极由于其高度可逆的法拉第响应,相对较高的导电性以及出色的理论赝电容值等优势,在CDI电极设计领域受到广泛关注。本文系统地归纳和梳理了过渡金属基电极在CDI应用中的材料分类,总结了针对其本征缺陷所进行改性工程,主要包括导电材料耦合、功能结构工程和缺陷工程等,并对其在海水淡化中的性能进行了总结;此外,从离子选择性分离、金属离子去除和营养元素回收等方面介绍了过渡金属基电极在CDI中的特定应用。最后,概述了剩余的挑战和研究方向,为未来的过渡金属基电极的开发与研究提供指导。  相似文献   

16.
通过调节氧化镉与炭黑之间的界面实现了高效电化学二氧化碳还原. 不同氧化镉和炭黑含量的 CdO/CB复合材料利用超声处理方法制备. 采用X射线衍射、 X射线光电子能谱和透射电子显微镜对所得复合材料进行表征, 揭示了其结构组成和形貌. 用H型电解池对CdO/CB复合材料电催化二氧化碳还原的性能进行测试发现, CdO质量分数为20%的CdO/CB 可在-1.0 V(vs. RHE)电位下获得高达92.7%的总法拉第效率, 而纯CdO在相同条件下的法拉第效率仅为69.5%. CO的法拉第效率最高可达87.4%. 进一步的对比实验和动力学研究结果表明, CdO/CB具有更高的电催化CO2还原性能源于复合材料中氧化镉与炭黑之间的界面和高接触面积. 此外, CdO/CB可在至少10 h的二氧化碳电还原反应中保持稳定的CO法拉第效率.  相似文献   

17.
傅里叶变换用于快扫伏安法的电流分离   总被引:2,自引:0,他引:2  
根据电化学池的电学模型,推导出相应的数学模型,和傅里变变换相结合,实现了扫描伏安数据的充电电流和法拉第电流的分离。模拟数据和实验数据的处理结果表明,所提出的方法均能实现充电电流和法拉第电流的分离,得到的结果与理论模型一致。  相似文献   

18.
一、绪言有机电解氧化合成(即用电解氧化进行有机合成)是电解合成的重要部分。它的历史已经很久了。1830年律多斯道夫(Lüdersdorff)首先对醇在不同电极上进行氧化,并对所生成的各种产物进行了详细的研究。1834年法拉第(Faraday)用醋酸钠水溶液电解生成乙烷。此反应在此15年后的1849年由柯尔贝  相似文献   

19.
林祥钦  陈宗海  邵学广  邓兆祥 《分析化学》1999,27(12):1381-1385
基于电化学理论电流公式,用迭代目标变换因子分析法对计时电路曲线进行处理,得到分离的法拉第电流和充电电流成分,对于简单的电极过程,分离效果很好,信噪比得到提高,法拉第电流分量可用于定量分析。  相似文献   

20.
杨光 《化学教育》1985,6(2):28-30
原电池在可逆条件下对外做最大有用功W最大在恒温恒压条件下,-△GTP=W’最大。若原电池在保持电动势E不变的条件下,有n当量的物质在电极上反应时,由法拉第定律可知,就有n法拉第的电量在线路中通过。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号