首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
For the plate formulation considered in this paper, appropriate three-dimensional elasticity solution representations for isotropic materials are constructed. No a priori assumptions for stress or displacement distributions over the thickness of the plate are made. The strategy used in the derivation is to separate functions of the thickness variable z from functions of the coordinates x and y lying in the midplane of the plate. Real and complex 3-dimensional elasticity solution representations are used to obtain three types of functions of the coordinates x, y and the corresponding differential equations. The separation of the functions of the thickness coordinate can be done by separately considering homogeneous and nonhomogeneous boundary conditions on the upper and lower faces of the plate. One type of the plate solutions derived involves polynomials of the thickness coordinate z. The other two solution forms contain trigonometric and hyperbolic functions of z, respectively. Both bending and stretching (or in-plane) solutions are included in the derivation.  相似文献   

3.
In this research work, an exact analytical solution for buckling of functionally graded rectangular plates subjected to non-uniformly distributed in-plane loading acting on two opposite simply supported edges is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the classical plate theory based on exact neutral surface position is employed to derive the governing stability equations. Considering Levy-type solution, the buckling equation reduces to an ordinary differential equation with variable coefficients. An exact analytical solution is obtained for this equation in the form of power series using the method of Frobenius. By considering sufficient terms in power series, the critical buckling load of functionally graded plate with different boundary conditions is determined. The accuracy of presented results is verified by appropriate convergence study, and the results are checked with those available in related literature. Furthermore, the effects of power of functionally graded material, aspect ratio, foundation stiffness coefficients and in-plane loading configuration together with different combinations of boundary conditions on the critical buckling load of functionally graded rectangular thin plate are studied.  相似文献   

4.
Two-dimensional magnetohydrodynamic (MHD) boundary layer flow of an upper-convected Maxwell fluid is investigated in a channel. The walls of the channel are taken as porous. Using the similarity transformations and boundary layer approximations, the nonlinear partial differential equations are reduced to an ordinary differential equation. The developed nonlinear equation is solved analytically using the homotopy analysis method. An expression for the analytic solution is derived in the form of a series. The convergence of the obtained series is shown. The effects of the Reynolds number Re, Deborah number De and Hartman number M are shown through graphs and discussed for both the suction and injection cases.  相似文献   

5.
A semi-analytical approach to the elastic nonlinear stability analysis of rectangular plates is developed. Arbitrary boundary conditions and general out-of-plane and in-plane loads are considered. The geometrically nonlinear formulation for the elastic rectangular plate is derived using the thin plate theory with the nonlinear von Kármán strains and the variational multi-term extended Kantorovich method. Emphasis is placed on the effect of destabilizing loads and on the derivation of the solution methodologies required for tracking a highly nonlinear equilibrium path, namely: parameter continuation and arc-length continuation procedures. These procedures, which are commonly used for the solution of discretized structural systems governed by nonlinear algebraic equations, are augmented and generalized for the direct application to the PDE. The boundary value problem that results from the arc-length continuation scheme and consists of coupled differential, integral, and algebraic equations is re-formulated in a form that allows the use of standard numerical BVP solvers. The performance of the continuation procedures and the convergence of the multi-term extended Kantorovich method are examined through the solution of the two-dimensional Bratu–Gelfand benchmark problem. The applicability of the proposed approach to the tracking of the nonlinear equilibrium path in the post-buckling range is demonstrated through numerical examples of rectangular plates with various boundary conditions.  相似文献   

6.
A semi-analytical approach for the geometrically non-linear analysis of rectangular laminated plates with general inplane and out-of-plane boundary conditions under a general distribution of out-of-plane loads is developed. The analysis is based on the elastic thin plate theory with geometrically non-linear von Kármán strains. The solution of the non-linear partial differential equations is reduced to an iterative sequential solution of non-linear ordinary differential equations using the multi-term extended Kantorovich method. The efficiency, accuracy, and convergence of the proposed method are examined through a comparison with other semi-analytical methods and with finite element analyses. The capabilities of the approach and its applicability to the non-linear large deflection analysis of plate structures are demonstrated through various numerical examples. Emphasis is placed on combinations of lamination, boundary, and loading conditions that cannot be analyzed using alternative semi-analytical methods.  相似文献   

7.
This paper deals with the nonlinear forced vibration of FGM rectangular plate with a boundary of two edges clamped opposite and the other two free. The plate is subjected to transversal and in-plane excitations. The present research treats the material properties of the FGM plates as temperature-dependent and graded continuously throughout the thickness direction, following the volume fraction of the constituent materials according to the power law. The temperature is assumed to be constant in the plane and varied only in the thickness direction of the plate. In the framework of geometrical nonlinearity the plate is modeled and the equations of motion are obtained on Hamilton's principle. With the help of Galerkin discretization, the nonlinear ordinary differential equations describing transverse vibration of the plate are proposed. By the numerical method, the nonlinear dynamical responses of the FGM plate with two clamped opposite and two free edges are analyzed.  相似文献   

8.
A two-dimensional solution is presented for bending analysis of simply supported functionally graded ceramic–metal sandwich plates. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity and Poisson’s ratio of the faces are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. We derive field equations for functionally graded sandwich plates whose deformations are governed by either the shear deformation theories or the classical theory. Displacement functions that identically satisfy boundary conditions are used to reduce the governing equations to a set of coupled ordinary differential equations with variable coefficients. Numerical results of the sinusoidal, third-order, first-order and classical theories are presented to show the effect of material distribution on the deflections and stresses.  相似文献   

9.
This paper deals with the inverse problem of a functionally graded material (FGM) elliptical plate with large deflection and disturbed boundary under uniform load. The properties of functionally graded material are assumed to vary continuously through the thickness of the plate, and obey a simple power law expression based on the volume fraction of the constituents. Based on the classical nonlinear von Karman plate theory, the governing equations of a thin plate with large deflection were derived. In order to solve this non-classical problem, a perturbation technique was employed on displacement terms in conjunction with Taylor series expansion of the disturbed boundary conditions. The displacements of in-plane and transverse are obtained in a non-dimensional series expansion form with respect to center deflection of the plate. The approximate solutions of displacements are solved for the first three terms, and the corresponding internal stresses can also be obtained.  相似文献   

10.
A novel mixed formulation is derived by means of Reissner's variational approach-based on Castigliano's principle of least work in conjunction with a Lagrange multiplier method for the calculus of variations. The governing equations present an alternative theory for modeling the important three-dimensional structural aspects of plates in a two-dimensional form. By integrating the classical Cauchy's equilibrium equations with respect to the thickness co-ordinate, and enforcing continuity of shear and normal stresses at each ply interface, condenses the effect of the thickness. A reduced system of partial differential equations of sixth-order in one variable, is also proposed, which contains differential correction factors that formally modify the classical constitutive equations for composite laminates. The theory degenerates to classical composite plate analysis for thin configurations. Significant deviations from classical plate theory are observed when the thickness becomes comparable with the in-plane dimensions. A variety of case studies are presented and solutions are compared with other models available in the literature and with finite element analysis.  相似文献   

11.
This paper presents an investigation on the nonlinear dynamic response of carbon nanotube-reinforced composite (CNTRC) plates resting on elastic foundations in thermal environments. Two configurations, i.e., single-layer CNTRC plate and three-layer plate that is composed of a homogeneous core layer and two CNTRC surface sheets, are considered. The single-walled carbon nanotube (SWCNT) reinforcement is either uniformly distributed (UD) or functionally graded (FG) in the thickness direction. The material properties of FG-CNTRC plates are assumed to be graded in the thickness direction, and are estimated through a micromechanical model. The motion equations are based on a higher-order shear deformation theory with a von Kármán-type of kinematic nonlinearity. The thermal effects are also included and the material properties of CNTRCs are assumed to be temperature-dependent. The equations of motion that includes plate-foundation interaction are solved by a two-step perturbation technique. Two cases of the in-plane boundary conditions are considered. Initial stresses caused by thermal loads or in-plane edge loads are introduced. The effects of material property gradient, the volume fraction distribution, the foundation stiffness, the temperature change, the initial stress, and the core-to-face sheet thickness ratio on the dynamic response of CNTRC plates are discussed in detail through a parametric study.  相似文献   

12.
A novel layerwise C0-type higher order shear deformation theory (layerwise C0-type HSDT) for the analysis of laminated composite and sandwich plates is proposed. A C0-type HSDT is used in each lamina layer and the continuity of in-plane displacements and transverse shear stresses at inner-laminar layer is consolidated. The present layerwise theory retains only seven variables without increasing the number of variables when the number of lamina layers are intensified. The shear stresses through the plate thickness derived from the constitutive equation of the present theory have the same shape as those calculated from the equilibrium equation. In addition, the artificial constraints are added in the principle of virtual displacements (PVD) and are certainly fulfilled through a penalty approach. In this paper, two C0-continuity numerical methods, such as the Finite Element Method (FEM) and Bézier isogeometric element (BIEM) are utilized to solve a discrete system of equations derived from the PVD. Several numerical examples with various geometries, aspect ratios, stiffness ratios, and boundary conditions are investigated and compared with the 3D elasticity solution, the analytical, as well as, numerical solutions based on various plate theories.  相似文献   

13.
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.  相似文献   

14.
In previous work, the stresses of a mode I elastic–plastic fracture mechanics problem were analytically continued across a prescribed elastoplastic boundary for plane stress loading conditions involving a linear elastic/perfectly plastic material obeying the Tresca yield condition. Immediately across the elastic-plastic boundary, a nonlinear parabolic partial differential equation governs the plastic stress field. The present solution deals with stresses extending beyond the parabolic region into the hyperbolic region of the plastic zone. This analytical solution is obtained through a tranformation of the original system of nonlinear partial differential equations into a linear system with constant coefficients. The solution, so obtained, is expressible in terms of elementary transcendental functions. It also exhibits a limiting line which passes through the crack tip. This feature of the solution suggests the formation of a plastic hinge in the material.  相似文献   

15.
辛立波 《力学季刊》2020,41(2):329-343
本文基于三维弹性理论,结合状态空间理论和离散奇异卷积算法分析了压电压磁圆柱壳的自由振动问题.圆柱壳的厚度方向被作为状态空间理论的传递方向,同时应用离散奇异卷积算法对面内域进行离散.因此,初始的偏微分运动方程被转化为由一阶常微分方程构成的状态方程.离散奇异卷积算法的引入使得本方法可以处理不同边界条件,从而扩展了常规状态空间方法的应用范围.本文对数值算例的计算验证了此方法的有效性和精确度.  相似文献   

16.
Numerical solutions for the free convection heat transfer in a viscous fluid at a permeable surface embedded in a saturated porous medium, in the presence of viscous dissipation with temperature-dependent variable fluid properties, are obtained. The governing equations for the problem are derived using the Darcy model and the Boussinesq approximation (with nonlinear density temperature variation in the buoyancy force term). The coupled non-linearities arising from the temperature-dependent density, viscosity, thermal conductivity, and viscous dissipation are included. The partial differential equations of the model are reduced to ordinary differential equations by a similarity transformation and the resulting coupled, nonlinear ordinary differential equations are solved numerically by a second order finite difference scheme for several sets of values of the parameters. Also, asymptotic results are obtained for large values of | f w|. Moreover, the numerical results for the velocity, the temperature, and the wall-temperature gradient are presented through graphs and tables, and are discussed. It is observed that by increasing the fluid variable viscosity parameter, one could reduce the velocity and thermal boundary layer thickness. However, quite the opposite is true with the non-linear density temperature variation parameter.  相似文献   

17.
The edge effects of a sandwich plate with a “soft” core and free edges, i.e. the plate is supported only at the lower face-sheet, and the upper face-sheet and the core are free of stresses at their edges, using the high order approach (HSAPT), are presented. The two-dimensional analysis consists of a mathematical formulation that uses the classical thin plate theory for the face-sheets and a three-dimensional elasticity theory for the core. The governing equations and the required boundary conditions are derived explicitly through variational principals, yielding a system of eight partial differential equations. The non-homogeneous differential equations system is numerically solved using a modification of the extended Kantorovich method (MEKM). The model presented enables a two-dimensional solution of the stress and displacement fields when subjected to a general scheme of loads. It is applicable to any type of boundary conditions that can be applied separately on each face-sheet and on the core. A numerical study is presented, and it examines the behavior and the two-dimensional stress field of a sandwich plate with free edges, at the upper face-sheet and core, subjected to thermal and uniformly distributed loads, for various boundary conditions at the lower face-sheet. For completeness, the MEKM solution of the two-dimensional high order model is verified through comparison with a three-dimensional Finite Element model revealing good correlation. Furthermore, the problems involved in the construction of an appropriate three-dimensional FE model of a full scale sandwich plate that require large computer resources are discussed.The numerical study yields that the peeling (normal) stresses, which reach their maximum values at the edges of the sandwich plate, using a one-dimensional analysis, varies also in the transverse direction from a maximum value in the middle of the edge, descending towards the corners. Moreover, the nature of variation along the boundaries strongly depends on the type of loading and the transverse boundary conditions. The substantial variation of the stress field in the transverse direction clearly shows the necessity of a two-dimensional analysis and the inefficiencies of the one-dimensional model.  相似文献   

18.
By using the method of stress functions, the problem of mode-II Griffith crack in decagonal quasicrystals was solved. First, the crack problem of two-dimensional quasicrystals was decomposed into a plane strain state problem superposed on anti-plane state problem and secondly, by introducing stress functions, the18 basic elasticity equations on coupling phonon-phason field of decagonal quasicrystals were reduced to a single higher-order partial differential equations. The solution of this equation under mixed boundary conditions of mode-II Griffith crack was obtained in terms of Fourier transform and dual integral equations methods. All components of stresses and displacements can be expressed by elemental functions and the stress intensity factor and the strain energy release rate were determined. Biography: GUO Yu-cui (1962-), Associate professor, Doctor  相似文献   

19.
Orthotropic circular annular plates have a lot of applications in engineering such as space structures and rotary machines. In this paper, frequency equations for the in-plane vibration of the orthotropic circular annular plate for general boundary conditions were derived. To obtain the frequency equation, first the equation of motion for the circular annular plate in the cylindrical coordinate is derived by using the stress-strain- displacement expressions. Helmholtz decomposition is used to uncouple the equations of motion. The wave equation is obtained by assumption a harmonic solution for the uncoupled equations. Using the separation of the variables leads to the general wave equation solution and the in-plane displacements in the r and θ directions. Finally, boundary conditions are exerted and the natural frequency is derived for general boundary conditions. The obtained results are validated by comparing with the previously reported and those from finite element analysis.  相似文献   

20.
The problem of axisymmetric nonlinear vibration for shallow thin spherical and conical shells when temperature and strain fields are coupled is studied. Based on the large deflection theories of yon Ktirrntin and the theory of thermoelusticity, the whole governing equations and their simplified type are derived. The time-spatial variables are separated by Galerkin ‘ s technique, thus reducing the governing equations to a system of time-dependent nonlinear ordinary differential equation. By means of regular perturbation method and multiple-scales method, the first-order approximate analytical solution for characteristic relation of frequency vs amplitude parameters along with the decay rate of amplitude are obtained, and the effects of different geometric parameters and coupling factors us well us boundary conditions on thermoelustically coupled nonlinear vibration behaviors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号