首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
ABSTRACT

This paper presents a computational algorithm that exploits inherent parallelism in the modified recursive formulation presented in Part I of the paper. Computational data flows to implement the algorithm are defined. By combining the topological analysis method presented in Part 1 of the paper, an efficient general purpose dynamic simulation algorithm is developed. Examples using the code developed show that real-time simulation can be achieved for moderately complex mechanical systems using a shared memory multiprocessor.  相似文献   

2.
ABSTRACT

ABSTRACT A recursive formulation of the equations of motion of constrained mechanical systems with closed loops is derived, using tools of variational and vector calculus. Kinematic couplings between pairs of contiguous bodies presented in Part 1 of this paper are generalized. Lagrange multipliers are introduced to account for the effects of joints that are cut to define a tree structure. Constraint Jacobian terms are added to the reduced variational equations derived in Part I. Cut-joint constraint acceleration equations are derived, to complete the reduced equations of motion. Lagrange multipliers associated with each cut-joint are eliminated at the first junction body encountered that permits closing the loop that constraints in cut joint. The inductive algorithm developed in Part I is used to calculate accelerations for the system. A multi-loop compressor is analyzed to illustrate use of the method.  相似文献   

3.
ABSTRACT

A finite element based method is developed for geometrically nonlinear dynamic analysis of spatial articulated structures; i.e., structures in which kinematic connections permit large relative displacement between components that undergo small elastic deformation. Vibration and static correction modes are used to account for linear elastic deformation of components. Kinematic constraints between components are used to define boundary conditions for vibration analysis and loads for static correction mode analysis. Constraint equations between flexible bodies are derived in a systematic way and a Lagrange multiplier formulation is used to generate the coupled large displacement-small deformation equations of motion. A lumped mass finite element structural analysis formulation is used to generate deformation modes. An intermediate-processor is used to calculate time-independent terms in the equations of motion and to generate input data for a large-scale dynamic analysis code that includes coupled effects of geometric nonlinearity and elastic deformation. Examples are presented and the effects of deformation mode selection on dynamic prediction are analyzed in Part II of the paper.  相似文献   

4.
A common approach for simplification analysis of complex dynamic model is presented, and the simplified dynamic model of a spatial 6-DOF parallel motion system with high computational efficiency is proposed for high real time control. By using Kane method, the full dynamic model of a spatial 6-DOF parallel motion system viewed as 13 rigid bodies is built. With rigid body decomposition, the full dynamic model is separated into several parts firstly, and then some separated parts are further divided into many dynamic components in terms of motion separation and the relationship with acceleration or velocity. The contribution of each dynamic term is analyzed for a specified spatial 6-DOF parallel motion system, and the simplified model is derived. Comparing with full dynamic model, the simplified error is analyzed, and the computational efficiency of the simplified model is discussed in a real-time industrial computer. The simplified strategy is confirmed in simulation. The simplified error is less than 8%, the simplified model can improve the computational efficiency by more than 70%, and the execution time is less than 0.1 ms, which can achieve the requirements of high real time control. The numerical results illustrate that the proposed approach is feasible and effective for simplification analysis of dynamics and the derived simplified dynamic model can be used in real-time control system with small simplified error.  相似文献   

5.
The goal of this paper is to present a flexible multibody formulation for Euler-Bernoulli beams involving large displacements. This method is based on a discretisation of internal and kinetic energies. The beam is represented by its line of centroids and each section is oriented by a frame defined by three Euler angles. We apply a finite element formulation to describe the evolution of these angles along the neutral fibre and describe the internal energy. The kinetic energy is approximated as the one of two rigid bars tangent to the neutral fibre at the ends of the beam. We derive the equations of motion from a Lagrange formulation. These equations are solved using the Newmark method or/and the Newton-Raphson technique. We solve some very classic problems taken from the literature as the curved beam presented by Simo [Simo, J. C., ‘A three-dimensional finite-strain rod model. the three-dimensional dynamic problem. Part I’, Comput. Meths. Appl. Mech. Engrg. 49, 1985, 55–70; Simo, J. C. and Vu-Quoc, L., ‘A three-dimensional finite-strain rod model, Part II: Computationals aspects’, Comput. Meths. Appl. Mech. Engrg. 58, 1988, 79–116] and Lee [Lee, Kisu, ‘Analysis of large displacements and large rotations of three-dimensional beams by using small strains and unit vectors’, Commun. Numer. Meth. Engrg. 13, 1997, 987–997] or the rotational rod presented by Avello [Avello, A., Garcia de Jalon, J., and Bayo, E., ‘Dynamics of flexible multibody systems using cartesian co-ordinates and large displacement theory’, Int. J. Num. Methods in Engineering 32, 1991, 1543–1563] and Simo [Simo, J. C. and Vu-Quoc, L., ‘On the dynamics of flexible beams under large overall motions – the planar case. Part I’ Jour. of Appl. Mech. 53, 1986, 849–854; Simo, J. C. and Vu-Quoc, L., ‘On the dynamics of flexible beams under large overall motions – the planar case. Part II’, Jour. of Appl. Mech. 53, 1986, 855–863].  相似文献   

6.
The paper presents a simple, fast, and reliable dynamic model for an off-road track vehicle operating on terrain with obstacles. The method has been proven previously for wheeled-vehicle formulation. The model is based on a discrete body dynamics (DBD) method, which leads to simplistic linear decoupled motion equations. In this method, joints and bodies with relatively small mass are replaced with stiff springs and dampers, eliminating the system’s constraints and reducing the number of system bodies; this is important for accelerating the simulation runtime of the track vehicle model. The track in this approach is based on modeling each link as a point-mass. Two consecutive links are connected by stiff springs and dampers. This approach reduces the calculation time and increases system stability. The track–soil interaction was modeled using Bekker’s and Janosi’s formulation (Bekker, 1956; Hanamoto and Janosi, 1961). Specific soil properties were obtained for each link–soil interaction from soil classification and GIS. The link–ground contact was determined from topographic surface and adjustment of the force and direction acting on the track. The results of the simulation using the DBD method were compared with Siemens' VL commercial multibody dynamics program and with experiments reported in the literature. Results using the proposed method were found to be similar to the commercial program based on published experiments. The solution runtimes obtained for unpaved soil were two orders faster with the DBD method compared with the Siemens' VL program. The model was written as an independent software infrastructure, enabling easy integration with any other software component, such as a control system. The algorithm is in a suitable form for parallel processing calculation to speed up the runtime simulation close to real-time.  相似文献   

7.
Abstract

Numerical algorithms for the solution of nonlinear algebraic equation systems are discussed. Special application to the mechanism and multibody system kinematic analysis, as well as to the problems of constraint stabilization during dynamics simulation is regarded. Special attention is paid to the approaches of a separate solution of the differential equations and constraint stabilization. Numerical procedures that are effective additions to the well-known algorithms based on the Newton-Raphson method are presented. The problems of loss of precision and achievement of large unreal increments of the varying parameters are discussed. The traditional Newton-Raphson method is modified by applying a step reduction procedure that is developed numerically for the symbolic form of kinematic and dynamic equations. An optimization method for stabilization of constraints using the mass matrix of dynamic equations is suggested. According to the objective function defined the stabilization procedure provides minimal deviations of the parameters and their velocities with respect to the solution of the differential equations. No generalized coordinate partitioning is required either for solution of the dynamic equations or for stabilization of the constraints. Several examples of kinematic analysis of single and four contour plane mechanisms and constraint stabilization are solved, and the results are compared. The advantages of the algorithms developed are tested with a high-degree of initial deviation from the real solution. It is also shown that the step correction algorithm could provide admissible solution even when, in many cases, the classical approaches are not reliable. An example of the direct and inverse kinematic problem solutions of the four-degrees-of-freedom spatial platform is presented.  相似文献   

8.
Summary The aim of this paper is to show that multibody systems with a large number of degrees of freedom can be efficiently modelled, taking conjointly advantage of a recursive formulation of the equations of motion and of the symbolic generation capabilities.Recursive schemes are widely used in the field of multibody dynamics since they avoid the explosion of the number of arithmetical operations in case of large multibody models. Within the context of our field of applications (railway dynamics simulation), explicit integration schemes are still prefered and thus oblige us to compute the generalized accelerations at each time step. To achieve this, we propose a new formulation of the well-known Newton/Euler recursive method, whose efficiency will be compared with a so-called O(N) formulation.A regards the symbolic generation, often decried due to the size of the equations in case of large systems, we have recently implemented recursive multibody formalisms in the symbolic programme ROBOTRAN [1]. As we shall explain, the recursive nature of these formalisms is particularly well-suited to symbolic manipulation.All these developments have been successfully applied in the field of railway dynamics, and in particular allowed us to analyse the dynamic behaviour of several railway vehicles. Some typical results related to a completely non-conventional bogie will be presented before concluding.  相似文献   

9.
富立  胡鸿奎  富腾 《力学学报》2017,49(5):1115-1125
基于非光滑动力学方法的多体系统接触碰撞分析是目前多体系统动力学的研究热点.本文采用牛顿-欧拉方法建立多体系统接触、碰撞问题的动力学模型,给出一种牛顿-欧拉型线性互补公式.该建模方法与目前一般采用的拉格朗日建模方法的不同之处是约束条件中除了库仑摩擦、单边约束之外还含有光滑等式约束.在建立系统动力学模型时,首先解除摩擦约束和单边约束得到原系统对应的基本系统.牛顿-欧拉方法采用最大数目坐标建立基本系统的动力学方程,由于坐标不相互独立,因此基本系统中带有等式约束,其数学模型为一组微分代数方程.借助约束雅可比矩阵,在基本系统微分代数方程中添加摩擦接触和单边约束对应的拉氏乘子,就可以得到系统全局运动的具有变拓扑结构特征的动力学方程,再结合非光滑约束互补条件便可构成完备的系统动力学模型.完备的动力学模型由动力学微分方程以及等式约束和不等式约束组成.线性互补公式采用分块矩阵形式进行推导,简化了推导过程.数值计算采用基于线性互补的时间步进算法.时间步进算法是目前流行的非光滑数值算法,其突出特点是可以免去数值积分中繁琐的事件检测过程,而数值积分过程中通过对线性互补问题的求解可以确定系统的触-离状态.通过对典型的曲柄滑块间隙机构进行数值分析,验证本文方法的有效性.  相似文献   

10.
11.
One important alternative to spatial direct numerical simulation (SDNS) of a growing boundary-layer transition is a temporal direct numerical simulation (TDNS), where the flow is assumed to be locally parallel and the transition develops in time. To model nonparallel effects of a growing boundary layer, the TDNS allows the boundary layer to grow in time. This approach has been shown to be effective for an incompressible boundary layer. For a compressible boundary layer, however, a simple application of this approach has been found to be insufficient. To investigate this issue, we first split the variation of the flow field in the streamwise direction into a slowly evolving part and a fast and small-scale fluctuation part. By Taylor-expanding the slowly evolving large-scale part, this study shows that the Navier-Stokes operator can be reformulated as a power series of the perturbation parameter (x–x 0), yielding one set of equations for each power. Each set of these equations has a periodic solution in the streamwise direction, and therefore a modified TDNS method can be employed to solve these equations. Only the first set of the equations is considered in the applications presented. During the linear stage of transition, the results from this extended formulation show a significant improvement over those from the previous parallel flow formulation, especially for second modes which have short wavelengths. The results are well comparable with those from parabolized stability equations (PSE) and SDNS. A good agreement between this extended formulation and SDNS results is also demonstrated at the nonlinear stage.Part of this work was supported by the Deutsche Forschungsgemeinschaft (DFG).  相似文献   

12.
Recursive formulations have significantly helped in achieving real-time computations and model-based control laws. The recursive dynamics simulator (ReDySim) is a MATLAB-based recursive solver for dynamic analysis of multibody systems. ReDySim delves upon the decoupled natural orthogonal complement approach originally developed for serial-chain manipulators. In comparison to the commercially available software, dynamic analyses in ReDySim can be performed without creating solid model. The input parameters are specified in MATLAB environment. ReDySim has the capability to incorporate any control algorithm with utmost ease. In this work, the capabilities of ReDySim for solving open-loop and closed-loop systems are shown by examples of robotic gripper, KUKA KR5 industrial manipulator and four-bar mechanism. ReDySim can be downloaded for free from http://www.redysim.co.nr and can be used almost instantly.  相似文献   

13.
ABSTRACT

Complementarity formulations are a promising approach for solving dynamic multi-rigid-body contact problems. Two aspects of simulating contact in a complementarity setting are addressed here. First, an explicit formulation of the differential equations governing contact points for bodies of general surface geometry is developed. These equations may be used to integrate the contact position and to set up the basic dynamics equations. Second, an efficient method for handling frictionless planar contacts of arbitrary boundary shape is presented. Throughout, the problem is set up as explicitly as possible, with special attention being given to the way that the contact geometry is related to the dynamics.  相似文献   

14.
A fractional step scheme with modified characteristic finite differences running in a parallel arithmetic is presented to simulate a nonlinear percolation system of multilayer dynamics of fluids in a porous medium with moving boundary values. With the help of theoretical techniques including the change of regions, piecewise threefold quadratic interpolation, calculus of variations, multiplicative commutation rule of difference operators, multiplicative commutation rule of difference operators, decomposition of high order difference operators, induction hypothesis, and prior estimates, an optimal order in l 2 norm is displayed to complete the convergence analysis of the numerical algorithm. Some numerical results arising in the actual simulation of migration-accumulation of oil resources by this method are listed in the last section.  相似文献   

15.
A 3D parallel overlapping scheme for viscous incompressible flow problems is presented that combines the finite element method, which is best suited for analysing flow in any arbitrarily shaped flow geometry, with the finite difference method, which is advantageous in terms of both computing time and computer storage. A modified ABMAC method is used as the solution algorithm, to which a sophisticated time integration scheme proposed by the present authors has been applied. Parallelization is based on the domain decomposition method. The RGB (recursive graph bisection) algorithm is used for the decomposition of the FEM mesh and simple slice decomposition is used for the FDM mesh. Some estimates of the parallel performance of FEM, FDM and overlapping computations are presented. © 1997 John Wiley & Sons, Ltd.  相似文献   

16.
岩质圆形隧洞围岩应力场弹塑性新解   总被引:1,自引:0,他引:1  
针对动态接触问题的有限元并行计算,提出了一种新的接触算法. 新算法引入局部拉氏 乘子技术来计算接触力. 由于同时考虑了无穿透的接触约束条件和相邻接触对的相互影响, 较之广泛使用的罚参数法,新算法使接触约束条件和系统平衡方程得到更充分的满足. 虽然 为提高接触计算精度而在局部采用了迭代技术,但算法仍然具有较高的效率,且与显式时间 积分方案完全相容. 此外,通过构造专门的区域分解方案,实现了将现有为串行程序开发的 搜索算法平滑移植到并行环境的目标. 数值算例表明,所提出的接触算法具有很好的并行性, 在保证了接触问题并行计算精度的同时,取得了满意的并行效率.  相似文献   

17.
In this paper, a new method for the dynamic analysis of a closed-loop flexible kinematic mechanical system is presented. The kinematic and force models are developed using absolute reference, joint relative, and elastic coordinates as well as joint reaction forces. This recursive formulation leads to a system of loosely coupled equations of motion. In a closed-loop kinematic chain, cuts are made at selected auxiliary joints in order to form spanning tree structures. Compatibility conditions and reaction force relationships at the auxiliary joints are adjoined to the equations of open-loop mechanical systems in order to form closed-loop dynamic equations. Using the sparse matrix structure of these equations and the fact that the joint reaction forces associated with elastic degrees of freedom do not represent independent variables, a method for decoupling the joint and elastic accelerations is developed. Unlike existing recursive formulations, this method does not require inverse or factorization of large non-linear matrices. It leads to small systems of equations whose dimensions are independent of the number of elastic degrees of freedom. The application of dynamic decoupling method in dynamic analysis of closed-loop deformable multibody systems is also discussed in this paper. The use of the numerical algorithm developed in this investigation is illustrated by a closed-loop flexible four-bar mechanism.  相似文献   

18.
19.
20.
针对微电子制造行业等领域中的长行程高精度定位问题,提出了一种刚柔耦合定位平台,并建立了其结构-运动-控制一体化动力学仿真模型。首先,根据刚柔耦合定位平台的结构特点对浮动坐标法进行修改,建立了简洁高效的动力学仿真模型。其次,结合动力学模型、3阶S型曲线和经典的PID控制方法建立了结构-运动-控制一体化仿真模型。最后,通过数值算例对仿真模型的有效性进行了验证。数值模拟结果显示,建立的结构-运动-控制一体化仿真模型能够有效地对定位平台的工作过程进行模拟,为后续的结构优化、运动规划和控制系统设计等工作创造条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号