首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
螺旋槽管管内湍流流动与换热的三维数值模拟   总被引:1,自引:0,他引:1  
利用Fluent对5种不同槽深的螺旋槽管进行了模拟求解,得出了湍流状态下螺旋槽管内流体的速度场和温度场,从微观上说明了螺旋槽管的强化传热机理。分析了槽深对螺旋槽管阻力性能和换热性能的影响。数值计算结果表明,该类螺旋槽管在湍流工况下的平均Nu数大约是光管的1.6—2.1倍,平均阻力系数f大约是光管1.5—4.5倍。与实验数据进行比较发现,数值模拟具有相当的可靠性。  相似文献   

2.
螺旋升角对凝结换热特性影响的研究   总被引:1,自引:0,他引:1  
本文对具有不同螺旋升角的螺旋槽换热管进行了凝结换热和阻力特性试验.试验结果表明,螺旋升角在螺旋槽管凝结换热过程中具有不可忽视的影响.分析了螺旋升角β对凝结换热及阻力特性的影响机理,提出考虑了螺旋升角因素的凝结换热经验关联式.  相似文献   

3.
高效传热管内凝结换热性能及阻力性能的实验研究   总被引:1,自引:0,他引:1  
本文以HFC134a和HCFC22为工质对光管及两种不同槽型的强化传热管(DAE-2管与DAEC管)的水平管内凝结换热进行了对比实验研究、研究发现,DAE-2管平均换热系数比光管提高了140%~170%,而单位长度阻力损失增加了50%~100%,DAEC管平均换热系数比光管提高了160%~200%,同时单位长度阻力损失增加了70%~130%。此外,本文给出了DAE-2管和DAEC管平均换热系数及阻力损失的计算关联式,可用于冷凝器设计。  相似文献   

4.
This study reports an experimental investigation of evaporative heat transfer and pressure drop of R-134a flowing downward inside vertical corrugated tubes with different corrugation pitches. The double tube test section is 0.5 m long with refrigerant flowing in the inner tube and hot water flowing in the annulus. The inner tubes are comprised of one smooth tube and three corrugated tubes with different corrugation pitches of 6.35, 8.46, and 12.7 mm. The test runs are performed at evaporating temperatures of 10°C, 15°C, and 20°C; heat fluxes of 20, 25, and 30 kW/m2; and mass fluxes of 200, 300, and 400 kg/m2s. The experimental data obtained from the smooth tube are plotted with flow pattern map for vertical flow. Comparisons between smooth and corrugated tubes on the heat transfer and pressure drop are also discussed. It is observed that the heat transfer coefficient and frictional pressure drop obtained from the corrugated tubes are higher than those from the smooth tube. Furthermore, the heat transfer coefficient and frictional pressure drop increase as the corrugation pitch decreases. The maximum heat transfer enhancement factor and penalty factor are up to 1.22 and 4.0, respectively.  相似文献   

5.
实验研究了环保替代制冷工质R410A、R22在水平强化管内冷凝换热特性,探索了热流密度、水流速度对换热特性、压降的影响。实验测试管为内螺纹强化管,长度为5.2 m,外径为9.52 mm。实验结果表明:制冷剂R410A、R22的传热系数和压降随热流密度的增大而增大,同时内螺纹管的换热系数还随管外冷却水流量的增加而升高,压降随冷凝温度的升高而降低,而R410A比R22有更好的换热效率和较小的压降。  相似文献   

6.
波纹内翅片管中对流换热与阻力特性的实验研究   总被引:7,自引:1,他引:6  
本文研究了空气在一种波纹内翅片管内强制对流的换热与阻力特性,得出了所测参数范围内换热Nusselt数和阻力系数f随Reynolds数变化的实验关联式,并与类似波纹内翅片管的换热效果进行了比较,结果表明波纹内翅片管换热强化的程度与其结构有很大的关系。  相似文献   

7.
非均匀加热条件下内插扭带管强化传热模拟分析   总被引:2,自引:0,他引:2  
以水为工作介质,采用欧拉多相流模型和非平衡沸腾模型,当流速在0.3~0.7m·s-1范围内、工作压力为4.5MPa、热流密度为2MW·m-2时,数值模拟了内插扭带管和光管管内流动过冷沸腾传热.对比了两种管道的换热系数、气泡份额、流动速度、流场流线、固体组件温度和压降,分析了内插扭带管的综合性能.结果表明,与光管相比较,...  相似文献   

8.
波纹板式空冷器阻力与传热特性实验研究   总被引:5,自引:0,他引:5  
在可改变风量和热水流量的实验条件下,对波纹板式空冷器的阻力与传热特性进行实验研究。得到了空气侧的阻力降关联式以及两侧的对流换热系数关联式,其适用于热水雷诺数在2000-8000之间、空气雷诺数在2000-10000之间。在相同工况下,比较了波纹板式、光管式和翅片管式空冷器的性能指标,结果表明:迎面风速在2.45-4.1 m/s之间,波纹板式空冷器传热系数达到100-160 W/m2/℃;约比光管式提高70%,但只有以管束外表面为基准的翅片管式传热系数的六分之一;板式空冷器单位体积换热量约是翅片管式空冷器的1.5倍,是光管式的15倍;板式空冷器单位功耗换热量约是光管式空冷器的5.5倍,而翅片管式空冷器与光管式空冷器则相差不大。  相似文献   

9.
弓形折流板换热器中折流板对换热器性能的影响   总被引:2,自引:0,他引:2  
本文采用Bell-Delaware换热器设计方法研究了传统弓形折流板换热器加热轻油时在不同管束排列角度下,改变换热器壳侧折流板间距以及改变折流板的窗口高度对管壳式换热器的壳体内径、换热管数目、壳侧换热系数及壳侧压降的影响.  相似文献   

10.
The heat transfer, pressure drop, and overall performance specification of a straight circular tube fitted with vortex-generator inserts are investigated experimentally. To modify the thermal-hydraulic performance, the longitudinal spacing of winglets is varied along the flow direction. The experiments are performed in the turbulent regime (7,470 ≤ Re ≤ 18,670). Good agreement is obtained when the results are compared and validated with previous correlations proposed for the plain tube. The results show that the use of vortex-generator inserts inside the tube yields a higher heat transfer coefficient and pressure drop than the plain tube, and these parameters augment with increasing the number of winglets. The effect of variation of longitudinal spacing of winglets along the vortex-generator inserts on the heat transfer coefficient is higher that the pressure drop. It is also detected that the variation of this parameter affects each arrangement of winglets exclusively.  相似文献   

11.
Enhancement of heat transfer in a heat exchanger via a DC corona discharge was studied experimentally using a single-tube shell-and-tube heat exchanger. Air was the working fluid in both the tube and shell sides. Excitation of the tube side was via a single wire electrode, while that of the shell side was via four rod electrodes oriented symmetrically at 90° intervals. Three series of experiments were performed: (1) excitation of the tube side only, (2) excitation of the shell side only, and (3) simultaneous excitation of the tube and shell sides. Both heat transfer and pressure drop measurements were performed, with Reynolds number and electric field potential as parametric quantities in the tube and shell sides. It was found that highest enhancements take place when the tube and shell sides are excited simultaneously, yielding a 322% increase in the overall heat transfer coefficient. Study of the heat transfer enhancements per unit pumping power indicates that for the range of parameters studied, the technique is most efficient at moderate Reynolds numbers and at electrode potentials in the midrange between threshold and sparkover limits.  相似文献   

12.
Laminar convective heat transfer enhancement of cuprous oxide (Cu2O)/water nanofluid flowing through a circular tube was investigated experimentally in the present work. A continuous closed loop was designed to measure heat transfer coefficients and pressure drop associated with the flow of Cu2O/water nanofluid over a wide range of laminar flow conditions. Comparison of the nanofluid experimental results with those of pure water have shown significant enhancement for heat transfer coefficients. On average, a 10% increase in heat transfer coefficient was observed with 16% penalty in pressure drop.  相似文献   

13.
An experimental study of condensation heat transfer characteristics of flow inside horizontal micro-fin tubes is carried out using R410A, R22, and R32 as the test fluids. This study especially focuses on the influence of heat transfer area upon the condensation heat transfer coefficients. The test sections were made of double tubes using the counter-flow type; the refrigerants condensation inside the test tube enabled heat to exchange with cooling water that flows from the annular side. The saturation temperature and pressure of the refrigerants were measured at the inlet and outlet of the test sections to defined state of refrigerants, and the surface temperatures of the tube were measured. A differential pressure transducer directly measured the pressure drops in the test section. The heat transfer coefficients and pressure drops were calculated using the experimental data. The condensation heat transfer coefficient was measured at the saturation temperature of 48°C with mass fluxes of 50–380 kg/(m2s) and heat fluxes of 3–12 kW/m2. The values of experimental heat transfer coefficient results are compared with the predicted values from the existing correlations in the literature, and a new condensation heat transfer coefficient correlation is proposed.  相似文献   

14.
微通道内超临界二氧化碳的压降与传热特性   总被引:4,自引:0,他引:4  
进行了微通道内超临界CO2的局部和平均传热与压降特性实验研究。结果表明,临界点附近物性参数的剧烈变 化使压降增大,但传热被大大强化。同时也发现,系统压力、质量流速及CO2温度对流动与传热特性有重要影响。在大 量实验数据的基础上,得出了冷却条件下水平微通道内超临界CO2强制对流换热关联式。  相似文献   

15.
The water/graphene oxide nanofluid effect in a pipe equipped by twisted tape inserts under air cross-flow is investigated and the optimal tape geometry is determined. The range of internal and external Reynolds numbers are: 3800<Reo<21500 and 550<Rei<2000. Heat transfer and pressure drop increase by increasing Re and inserts width and heat transfer performance coefficient increased up to 1.4, indicating enhanced heat transfer compared to undesirable pressure drop. On the other hand, the heat transfer coefficient is 26% higher when compared with water in a plain tube. According to the results, this method is a good alternative in heat exchangers.  相似文献   

16.
用数值方法对饱和蒸汽在纵槽管表面的冷凝换热性能进行了研究。以发展段为主要研究对象,对模型进行了适当的简化,建立了液膜的基本方程,并与二维导热方程耦合,用Runge-Kutta法和有限元法解方程,通过迭代,分别得到了传热量以及最大液膜厚度与坐标z的关系式。最后用文中的分析方法,研究了制冷剂R-113在余弦形纵槽管上的冷凝,并与文献中的实验值做了对比。结果表明,纵槽管的长度(无除液盘时)或除液盘间距应小于最大有效管长,以便纵槽管在温差较大时仍具有较好的换热效果;在温差较小时,数值分析结果与文献中的实验数据吻合较好,证明本文的分析方法具有可行性。  相似文献   

17.
M. Mirzaei  A. Azimi 《实验传热》2013,26(2):173-187
In this work, heat transfer and pressure drop characteristics of graphene oxide/water nanofluid flow through a circular tube having a wire coil insert were studied. The required graphene oxide was synthesized via the Hummer method and characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (SRD), and scanning electron microscope (SEM) methods. Dispersing graphene oxide in the water, nanofluids with 0.02, 0.07, and 0.12% volume fraction were prepared. An experimental set-up was designed and made to investigate the heat transfer performance and pressure loss of nanofluids. All experiments were carried out in the constant heat flux at tube wall conditions. The volumetric flow rates of the nanofluid were adjusted at 6, 8, and 10 L/min. Thermal conductivity, specific heat, density, and viscosity as thermophysical properties of the nanofluid were calculated using graphene oxide and water properties at the average temperature via appropriate relations. These properties were applied to calculate the convective heat transfer coefficient, Nusselt number, and friction factors for each experiment. Finally, the constant and exponents of Duangthongsuk and Wongwises's correlations for Nusselt number and friction factor were corrected by experimental results. The achieved experimental data have shown good agreement with those predicted. The results have shown that 0.12 vol% of graphene oxide in the water can enhance convective heat transfer coefficient by about 77%. As a result, it can be concluded that the graphene oxide/water can be used in the heat transfer devices to achieve more efficiency.  相似文献   

18.
This article reports an experimental study on copper–water nanofluid flow inside plain and perforated channels. The effects of flow rate and nanoparticle concentration on the heat transfer and pressure drop are studied. It is found that the perforated channel has a remarkable heat transfer enhancement of 24.6%. Furthermore, by using the copper–water nanofluid instead of the base fluid, the heat transfer coefficient as well as pressure drop are increased for both plain and perforated channels. A noticeable thermal performance factor of 1.34 is obtained for the simultaneous utilization of both the heat transfer enhancement techniques considered in this article.  相似文献   

19.
厚翅片管内流体流动和传热的数值分析   总被引:4,自引:0,他引:4  
本文应用Patankar等人[1]研究薄翅片管的湍流模型,对一种工业化的厚翅片管内的流体流动和传热进行了数值分析。计算范围包括了层流和湍流(Re=101~106),所得计算结果与较窄范围内实验所测的传热与阻力数据相当符合,本计算结果具有较大的推广价值。  相似文献   

20.
弹性管束汽-水换热器强化传热试验研究   总被引:2,自引:0,他引:2  
本文设计了一种新的传热元件-弹性管束,它对管内外流体流动具有良好的振动响应特性。利用传热表面振动提高管外对流换热系数的同时,利用振动变形减少积垢,降低污垢热阻,实现了复合强化传热。在汽水换热条件下,对流作诱导振动强化传热规律进行了试验研究,得到了管外对流换热的准则方程式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号