首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
ABSTRACT

This paper presents an analytical method to examine the dynamical behavior of periodically perturbed linear conservative gyroscopic systems. Explicit stability conditions for perturbations of small intensity are obtained using the method of averaging. The existence of combination resonance in addition to subharmonic parametric resonance is established. For large periodic excitation, a numerical method based on the Floquet theory is used to extend the stability boundaries. These results are applied to the problem of flow-induced vibration in a supported cylindrical pipe conveying fluid with pulsating velocity. The effects of the mean flow velocity, dissipative forces, boundary conditions, and virtual mass on the extent of the parametric instability regions are then discussed.  相似文献   

2.
Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation are studied analytically. The axial speed, as the source of parametric vibrations, is assumed to involve a mean speed, along with small harmonic variations. The method of multiple scales is applied to the governing non-linear equation of motion and then the natural frequencies and mode shape equations of the system are derived using the equation of order one, and satisfying the compatibility conditions. Using the equation of order epsilon, the solvability conditions are obtained for three distinct cases of axial acceleration frequency. For all cases, the stability areas of system are constructed analytically. Finally, some numerical simulations are presented to highlight the effects of system parameters on vibration, natural frequencies, frequency-response curves, stability, and bifurcation points of the system.  相似文献   

3.
Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the linear stability behaviour of parallel shear flow, presents unstable results of plane Couette flow and pipe Poiseuille flow to two-dimensional or axisymmetric disturbances for the first time, and obtains neutral curves of these two motions under certain definition.  相似文献   

4.
The stability of an axially moving beam constituted by fractional order material under parametric resonances is investigated. The governing equation is derived from Newton??s second law and the fractional derivative Kelvin constitutive relationship. The time-dependent axial speed is assumed to vary harmonically about a constant mean velocity. The resulting principal parametric resonances and summation resonances are investigated by the multi-scale method. It is found that instabilities occur when the frequency of axial speed fluctuations is close to two times the natural frequency of the beam or when the frequency is close to the sum of any two natural frequencies. Moreover, Numerical results show that the larger fractional order and the viscoelastic coefficient lead to the larger instability threshold of speed fluctuation for a given detuning parameter. The regular axially moving beam displays a higher stability than the beam constituted by fractional order material.  相似文献   

5.
研究面内载荷作用下轴向变速运动正交各向异性薄板的横向振动及其稳定性。利用Galerkin法与平均法,在激励频率为2倍固有频率或为两阶固有频率之和附近时得到自治的常微分方程组;在参数激励频率和激励振幅平面上,分析由共振引发的失稳区域。数值算例验证了面内载荷、轴向速度、加速度参数对失稳区域的影响。  相似文献   

6.
分布式运动约束下悬臂输液管的参数共振研究   总被引:2,自引:0,他引:2  
王乙坤  王琳 《力学学报》2019,51(2):558-568
输液管道结构在航空、航天、机械、海洋、水利和核电等工程领域都有广泛应用,其稳定性、振动与安全评估备受关注.针对具有分布式运动约束悬臂输液管的非线性动力学模型,分别采用立方非线性弹簧和修正三线性弹簧来模拟运动约束的作用力,研究了管道在脉动内流激励下的参数共振行为.首先,从输液管系统的非线性控制方程出发,利用Galerkin方法进行离散化;然后,由Floquet理论得出线性系统在失稳前两个不同平均流速下脉动幅值和脉动频率变化时的共振参数区域;最后,考虑系统的几何非线性项和分布式非线性运动约束力的影响,求解了管道的非线性动力学响应,讨论了非线性项及运动约束力对管道参数共振行为的影响.研究结果表明,系统非线性共振响应的参数区域与线性系统的共振参数区域是一致的,分布式运动约束力对发生参数共振时管道的位移响应有显著影响;立方非线性弹簧和修正三线性弹簧模型所预测的分岔路径存有较大差异,但都可诱发管道在一定的参数激励下出现混沌运动.   相似文献   

7.
This paper suggests a hydrodynamic stability theory of distorted laminar flow, and presents a kind of distortion profile of mean velocity in parallel shear flow. With such distortion profiles, the new theory can be used to investigate the stability behaviour of parallel shear flow, and thus suggests a new possible approach to instability. The Project Supported by National Natural Science Foundation of China.  相似文献   

8.
The swirling flow between a rotating lid and a stationary cylinder is studied experimentally. The flow is governed by two parameters: the ratio of container height to disk radius, h, and the Reynolds number, Re, based on the disk angular velocity, cylinder radius and kinematic viscosity of the working liquid. For the first time, the onset of three-dimensional flow behavior is measured by combining the high spatial resolution of particle image velocimetry and the temporal accuracy of laser Doppler anemometry. A detailed mapping of the transition scenario from steady and axisymmetric flow to unsteady and three-dimensional flow is investigated for 1 ≥ h ≥ 3.5. The flow is characterized by the development of azimuthal modes of different wave numbers. A range of different modes is detected and critical Reynolds numbers and associated frequencies are identified. The results are compared to the numerical stability analysis of Gelfgat et al. (J Fluid Mech 438:363–377, 2001). In most cases, the measured onset of three-dimensionality is in good agreement with the numerical results and disagreements can be explained by bifurcations not accounted for by the numerical stability analysis.  相似文献   

9.
The dynamic stability of axially moving viscoelastic Rayleigh beams is presented. The governing equation and simple support boundary condition are derived with the extended Hamilton’s principle. The viscoelastic material of the beams is described as the Kelvin constitutive relationship involving the total time derivative. The axial tension is considered to vary longitudinally. The natural frequencies and solvability condition are obtained in the multi-scale process. It is of interest to investigate the summation parametric resonance and principal parametric resonance by using the Routh-Hurwitz criterion to obtain the stability condition. Numerical examples show the effects of viscosity coefficients, mean speed, beam stiffness, and rotary inertia factor on the summation parametric resonance and principle parametric resonance. The differential quadrature method (DQM) is used to validate the value of the stability boundary in the principle parametric resonance for the first two modes.  相似文献   

10.
Air-water numerical simulations in the slug flow regime have been performed in horizontal helical pipes and the effects of geometries on the flow regime have been investigated. Depending on the length of the helix, outlet slug frequencies have been reduced with various degrees of efficiency. Correlations between mean tangential velocity and helicity density fluctuations have been identified and investigated qualitatively. These flow fields show smaller time scales than those obtained in volume fractions fluctuations. Shifts observed in the tangential velocity and mean helicity fluctuations to smaller time scales (high frequencies) are associated with regime transitions. For a slug flow undergoing a continuous transition to the annular flow regime, it is shown that the presence of slower (low frequencies) helicity fluctuations is attributed to the variations in the axial velocity. Finally, the analysis of the helicity at gas-liquid interface confirms the presence of the mixing zone at the slug front.  相似文献   

11.
We use Large Eddy Simulation to investigate the influence of upstream boundary conditions on the development of a backward facing step flow. The first inlet condition consists of a mean turbulent boundary layer velocity profile perturbed by a white noise. The second relies upon a precursor calculation where the development of a quasi-temporal turbulent boundary layer is simulated. In this case, the quasi-longitudinal vortices in the upstream turbulent boundary-layer trigger the destabilization of the shear layer just behind the step, resulting in a shortening of the recirculation length and an increase of the characteristic frequency associated to the Kelvin–Helmholtz vortices. The mean flow and the characteristic frequencies of pressure fluctuations are strongly dependent of the upstream flow. It demonstrates the importance of realistic boundary conditions for the simulation of complex 3D flows or for flow control simulations. To cite this article: J.-L. Aider, A. Danet, C. R. Mecanique 334 (2006).  相似文献   

12.
The stability problem of low-speed plane Couette-Poiseuille flow of air under heat transfer effects is solved numerically using the linear stability theory. Stability equations obtained from two-dimensional equations of motion and their boundary conditions result in an eigenvalue problem that is solved using an efficient shoot-search technique. Variable fluid properties are accounted for both in the basic flow and the perturbation (stability) equations. A parametric study is performed in order to assess the roles of moving wall velocity and heat transfer. It is found that the moving wall velocity and the location of the critical layers play decisive roles in the instability mechanism. The flow becomes unconditionally stable whenever the moving wall velocity exceeds half of the maximum velocity in the channel. With wall heating and Mach number effects included, the flow is stabilized.  相似文献   

13.
ABSTRACT

Direct numerical simulations of temporally evolving supersonic turbulent channel flow of thermally perfect gas are conducted at Mach number 3.0 and Reynolds number 4800, combined with constant dimensional wall temperatures from 149.075 to 1788.90?K to study the influence of dimensional wall temperature on the characteristics of Reynolds stress budgets. It is found that, as the dimensional wall temperature increases, the production, diffusion, pressure–velocity gradient correlation and dissipation terms increase, whereas the compressibility-related term decreases. This is mainly due to variations in mean flow properties. The mechanism of inter-component transfer (ICT) is insensitive to the dimensional wall temperature. The ICT relating to the pressure–velocity gradient correlation term can be divided into inner and outer regions, and the critical position separating these regions is at the semi-local scaling of approximately 16 irrespective of the different dimensional wall temperature.  相似文献   

14.
Javadi  M.  Noorian  M. A.  Irani  S. 《Meccanica》2019,54(3):399-410

Divergence and flutter instabilities of pipes conveying fluid with fractional viscoelastic model has been investigated in the present work. Attention is concentrated on the boundaries of the stability. Based on the Euler–Bernoulli beam theory for structural dynamics, viscoelastic fractional model for damping and, plug flow model for fluid flow, equation of motion has been derived. The effects of gravity, and distributed follower forces are also considered. By transferring the equation of motion to the Laplace domain and using the Galerkin method, the characteristic equations are obtained. By solving the eigenvalue problem, frequencies and dampings of the system have been obtained versus flow velocity. Some numerical test cases have been studied with viscoelastic fractional model and the effect of the fractional derivative order and the retardation time is investigated for various boundary conditions.

  相似文献   

15.
RID="ID=" Communicated by P. HallAbstract:The absolute/convective instability of two-dimensional wakes forming behind a flat plate and near the trailing-edge of a thin wedge-shaped aerofoil in an incompressible/compressible fluid is investigated. The mean velocity profiles are obtained by solving numerically the classical compressible boundary-layer equations with a negative pressure gradient for the flat plate case, and the incompressible triple-deck equations for a thin wedge-shaped trailing-edge. In addition for a Joukowski aerofoil the incompressible mean boundary-layer flow in the vicinity of the trailing-edge is also calculated by solving the interactive boundary-layer equations. A linear stability analysis of the boundary-layer profiles shows that a pocket of absolute instability occurs downstream of the trailing-edge with the extent of the instability region increasing with more adverse pressure gradients. The region of absolute instability persists along the near-wake axis, while the majority of the wake is convectively unstable. For a thin wedge-shaped trailing-edge in an incompressible fluid, a similar stability analysis of the velocity profiles obtained via a composite expansion, also shows the occurrence of absolute instability behind the trailing-edge for a wedge angle greater than a critical value. For increasing values of the wedge angle and for thicker aerofoils, separation takes place near the trailing-edge and the extent of absolute instability increases. Calculations also show that for insulated plates compressibility has a stabilizing effect but cooling the wall destabilizes the flow unlike wall heating.} Received 11 May 1998 and accepted 25 February 1999  相似文献   

16.
The problem of pulsating flow superimposed on the steady laminar flow in a circular tube is investigated for the fluid characterized by the Oldroyd's constitutive equations. The governing equations are solved in an exact manner and the solution is obtained in terms of two non-dimensional fluid parameters. Several interesting illustrations are provided comparing the behaviour of Newtonian fluid and Oldroyd fluids regarding the velocity field, sectional mean velocity, surface friction and balance of force. The flow for small and large frequencies of vibration are obtained as special cases. For Oldroyd fluids also the flow is basically parabolic for small frequencies while it possesses a boundary layer character at large frequencies. The solution for second order fluids and Maxwell fluids can be obtained by appropriately choosing the two fluid parameters.  相似文献   

17.
Nonlinear static and dynamic behaviour of a simply supported fluid-conveying tube, which has a constant inner diameter and a variable thickness is analysed analytically and numerically. Nonlinear static bending is considered in two loading cases: (i) a tube subjected to supercritical axial compressive forces acting at its edges or (ii) a tube loaded by concentrated bending moments, which provide a symmetrical (with respect to the mid-span) shape of a tube. The nonlinear governing equations of motions are derived by using Hamilton's principle. The elementary plug flow theory of an incompressible inviscid fluid is adopted for modelling a fluid–structure interaction. The flow velocity is taken as the sum of a principal constant ‘mean’ velocity component and a fairly small pulsating component. Firstly, eigenfrequencies and eigenmodes of a deformed tube are found from linearised equations of motions. Then resonant nonlinear oscillations of a tube about its deformed static equilibrium position in a plane of static bending are considered. A multiple scales method is used and a weak resonant excitation by the flow pulsation is considered in a single-mode regime and in a bi-modal regime (in the case of an internal parametric resonance) and the stability of each of them is examined. The brief parametric study of these regimes of motions is carried out.  相似文献   

18.
The flow over two square cylinders in staggered arrangement is simulated numerically at a fixed Reynolds number (\(Re =150\)) for different gap spacing between cylinders from 0.1 to 6 times a cylinder side to understand the flow structures. The non-inclined square cylinders are located on a line with a staggered angle of \(45^{\circ }\) to the oncoming velocity vector. All numerical simulations are carried out with a finite-volume code based on a collocated grid arrangement. The effects of vortex shedding on the various features of the flow field are numerically visualized using different flow contours such as \(\lambda _{2}\) criterion, vorticity, pressure and magnitudes of velocity to distinguish the distinctive flow patterns. By changing the gap spacing between cylinders, five different flow regimes are identified and classified as single body, periodic gap flow, aperiodic, modulated periodic and synchronized vortex shedding regimes. This study revealed that the observed multiple frequencies in global forces of the downstream cylinder in the modulated periodic regime are more properly associated with differences in vortex shedding frequencies of individual cylinders than individual shear layers reported in some previous works; particularly, both shear layers from the downstream cylinder often shed vortices at the same multiple frequencies. The maximum Strouhal number for the upstream cylinder is also identified at \({G}^{*}=1\) for aperiodic flow pattern. Furthermore, for most cases studied, the downstream cylinder experiences larger drag force than the upstream cylinder.  相似文献   

19.
An approximate analytical solution is derived for the Couette–Poiseuille flow of a nonlinear viscoelastic fluid obeying the Giesekus constitutive equation between parallel plates for the case where the upper plate moves at constant velocity, and the lower one is at rest. Validity of this approximation is examined by comparison to the exact solution during a parametric study. The influence of Deborah number (De) and Giesekus model parameter (α) on the velocity profile, normal stress, and friction factor are investigated. Results show strong effects of viscoelastic parameters on velocity profile and normal stress. In addition, five velocity profile types were obtained for different values of α, De, and the dimensionless pressure gradient (G).  相似文献   

20.
对近二十年来轴向移动系统(移动弦,移动梁和移动带等)的参数振动研究进展进行了详细的评述,特别关注了轴向张紧力和移动速度随时间改变时轴向移动系统的参数振动特性和稳定性等问题。文章首先讨论了所研究问题的控制方程。然后详细说明了目前研究中人们较为关注的几个重点问题,如参数激励的形式,求解方法和所研究的问题等。接着在其后的两节中,分别评述了在张紧力和移动速度随时间变化时,轴向移动弦和轴向移动梁的振动问题近年来的研究进展,详细、深入讨论了模型的类型、张紧力和轴向移动速度随时间变化的形式以及在研究中使用的解题方法和系统的振动特性(振动响应、固有频率和动态稳定性)等;最后给出了在此领域今后研究中应关注的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号