首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Complete assignment of the 1H and 19F chemical shifts in 4‐fluoro‐AF4 (1) were based on the nOes seen in its 19F‐1H HOESY spectrum. This allowed for identification of features which can further be applied to the assignment of the regiochemistry of substituted perfluoroparacyclophanes (PCPs) and AF4s: (i) an aromatic fluorine couples with the two fluorines in the closest bridge that are syn to it, with constants of ca. 20 Hz; (ii) an aromatic fluorine couples with the bridge fluorine five bonds away that is anti to it in the same paraphenylene moiety, with a constant of ca. 3.5 Hz; (iii) the geminal coupling of the bridge fluorines is 246 Hz if they have an ortho fluorine and 238 Hz if they do not; (iv) a bridge fluorine couples with those aromatic protons in the same paraphenylene moiety that are four or five bonds away and anti. These features have been used to assign the regiochemistry of the pseudo‐ortho, pseudo‐meta and pseudo‐para‐difluoro AF4s 2–4. It has also been demonstrated that SCS for the bridge fluorines can be used as well for this assignment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
The fluorine chemical shifts and spin-spin coupling constants of 65 pentafluorophenyl derivatives with widely varying organic substituents were examined. Useful correlations of the three meta coupling constants with the chemical shifts of the para fluorine were found. It is suggested that these relationships be extended to all compounds of the type considered in order to determine the signs and approximate values of meta coupling constants. Equations for correlation of the fluorine chemical shifts with the Taft constants are presented. The possibility of calculating the Taft constants from the 19F NMR spectra of pentafluorophenyl compounds is being discussed.  相似文献   

4.
The 19F substituent chemical shifts (SCS) of a series of para-phenylacetyl fluorides (X? Ph? CH2? COF) are reported and compared with the related benzoyl fluoride series (X? Ph? COF). A dual substituent parameter analysis of the results for the new series shows that both inductive and resonance effects are reduced by one third when compared with the benzoyl fluorides. 13C shifts for the side chain carbonyl were also measured and found to follow a reversed trend in substituent effects, consistent with a pi polarization mechanism. SCS values for the fluorine and its adjacent carbon are not directly related. Ab initio (STO-3G) calculations of the carbon and fluorine electron density for this series have been compared with the appropriate SCS values. From the electron densities and the observation that the fluorine SCS values follow a normal direction, whilst those for electron densities and the observation that the fluorine SCS values follow a normal direction, whilst those for the adjacent carbon are reversed, it is concluded that fluorine SCS values (and Δqπ values) result from polarization of the C? F pi bond and do not merely monitor changes in electron density of the adjacent carbon.  相似文献   

5.
Fluorinated graphites (CF0.47) were obtained by reaction at room temperature of fluorine gas with graphite in the presence of boron trifluoride and hydrogen fluoride as catalysts. Their thermal treatments under fluorine at temperatures up to 600 °C lead to a progressive increase of the fluorine level resulting in an highly fluorinated graphite (CF1.02). Whatever the fluorination level, a stage one fluorine-graphite intercalation compound is obtained. The sp2 carbon hybridization is maintained for treatment temperature below 300 °C and two types of structure coexist for TT in the range 350-550 °C. Finally, above 550 °C, carbon hybridization is sp3.The resulting materials were studied by 11B, 1H, and 19F NMR and EPR at different experimental temperatures giving informations about the intercalated fluoride species, the temperature of their removal from the host fluorocarbon matrix, as well as their mobility.  相似文献   

6.
The X‐ray structure of the title compound [Pd(Fmes)2(tmeda)] (Fmes=2,4,6‐tris(trifluoromethyl)phenyl; tmeda=N,N,N′,N′‐tetramethylethylenediamine) shows the existence of uncommon C? H???F? C hydrogen‐bond interactions between methyl groups of the TMEDA ligand and ortho‐CF3 groups of the Fmes ligand. The 19F NMR spectra in CD2Cl2 at very low temperature (157 K) detect restricted rotation for the two ortho‐CF3 groups involved in hydrogen bonding, which might suggest that the hydrogen bond is responsible for this hindrance to rotation. However, a theoretical study of the hydrogen‐bond energy shows that it is too weak (about 7 kJ mol?1) to account for the rotational barrier observed (ΔH=26.8 kJ mol?1), and it is the steric hindrance associated with the puckering of the TMEDA ligand that should be held responsible for most of the rotational barrier. At higher temperatures the rotation becomes fast, which requires that the hydrogen bond is continuously being split up and restored and exists only intermittently, following the pulse of the conformational changes of TMEDA.  相似文献   

7.
The preferred conformations of a small polyfunctional molecule containing fluorine, chlorine and hydroxyl groups, the 1-chloro-1,1-difluoro-2-pentanol (CDP), were completely elucidated using 1H, 13C and 19F NMR in three different solvents. While the Cl-C-C-O dihedral angle was asserted using coupling constant data for the diastereotopic fluorines, the Et-C-C-O torsional angle was analyzed by means of 1H NMR spectra with selective irradiation of the diastereotopic hydrogens and fluorines. In addition, unusual couplings of the hydroxyl hydrogen with a diastereotopic hydrogen and fluorines provided information on the O-H orientation. The behavior of 1JC,F when the solvents varied agrees with a weak F???HO intramolecular hydrogen bond. These findings were corroborated, and the governing interactions rationalized with the aid of high level CCSD(T) theoretical calculations. Noteworthy, hyperconjugation involving the electron-acceptor σ*C-Cl orbital drives the conformational equilibrium rather than the fluorine gauche effect.  相似文献   

8.
Although there are ways to synthesize ortho‐pentafluoro‐λ6‐sulfanyl (SF5) pyridines, meta‐ and para‐SF5‐substituted pyridines are rare. We disclose herein a general route for their synthesis. The fundamental synthetic approach is the same as reported methods for ortho‐SF5‐substituted pyridines and SF5‐substituted arenes, that is, oxidative chlorotetrafluorination of the corresponding disulfides to give pyridylsulfur chlorotetrafluorides (SF4Cl‐pyridines), followed by chloride/fluoride exchange with fluorides. However, the trick in this case is the presence on the pyridine ring of at least one fluorine atom, which is essential for the successful transformation of the disulfides into m‐and p‐SF5‐pyridines. After enabling the synthesis of an SF5‐substituted pyridine, ortho‐F groups can be efficiently substituted by C, N, S, and O nucleophiles through an SNAr pathway. This methodology provides access to a variety of previously unavailable SF5‐substituted pyridine building blocks.  相似文献   

9.
A terminal palladium (II) fluoride complex (FPNP)PdF (where FPNP is a an anionic fluoro-substituted diarylamido/bis(phosphine) pincer ligand) has been prepared and characterized spectroscopically and structurally. An X-ray diffraction study revealed an approximately square-planar environment about Pd and a short Pd-F bond distance. (FPNP)PdF reacted with silanes containing electron-withdrawing groups on Si by exchange of fluoride with one of the substituents on Si. An analysis of the 19F chemical shifts of both the Pd-bound fluoride and of the fluorines on the backbone of the FPNP ligand is provided.  相似文献   

10.
Thionyl tetrafluoride (SOF4) is a valuable connective gas for sulfur fluoride exchange (SuFEx) click chemistry that enables multidimensional linkages to be created via sulfur–oxygen and sulfur–nitrogen bonds. Herein, we expand the available SuFEx chemistry of SOF4 to include organolithium nucleophiles, and demonstrate, for the first time, the controlled projection of sulfur–carbon links at the sulfur center of SOF4‐derived iminosulfur oxydifluorides (R1?N=SOF2). This method provides rapid and modular access to sulfonimidoyl fluorides (R1?N=SOFR2), another array of versatile SuFEx connectors with readily tunable reactivity of the S?F handle. Divergent connections derived from these valuable sulfonimidoyl fluoride units are also demonstrated, including the synthesis of sulfoximines, sulfonimidamides, and sulfonimidates.  相似文献   

11.
运用密度泛函理论(DFT), 研究了吸电子氟基和供电子羟基在取代甲苯的α-H以后, 其邻、间、对各位次进行硝化反应的速控步骤, 在B3LYP/6-311G**水平上, 计算了该速控步骤基元反应各反应驻点(反应物、过渡态和中间体)的优化几何、电子结构和能量性质, 并首次给出了目标硝化反应速控步骤的IR谱学的动态特征及解析, 从微观层面上验证了反应坐标C—N的形成和C—H的断裂是非协同的, 从而无一级动力学同位素效应的实验事实. 通过对目标硝化反应速控步骤的微观动态计算, 验证了氟基对甲基定位的影响. 氟基的电负性大, 吸电子能力强, 取代甲苯的α-H以后对硝酰阳离子的进攻有抑制作用, 活化能较取代前高, 但比较苄基氟各位次硝化活化能的相对大小得知, -CH2F仍为邻、对位定向基团. 而供电子羟基取代甲苯的α-H以后, 则对硝酰阳离子的进攻有促进作用, 因而各反应驻点络合物的稳定化能较α-H取代前甲苯的有所增大, 且邻、对位硝化的活化能较间位低, 故-CH2OH为邻、对位定位基. 但对位因硝化活化能低, 反应放热多, 空间位阻小, 为亲电试剂NO2+最有利的进攻位; 而邻位则因羟基取代甲苯α-H后多了一个氧原子, 增大了邻位进攻的空间位阻, 使得其络合物的能量比相应对位的高.  相似文献   

12.
Fluorine, hydrogen, and 13C NMR spectral data have been obtained for vinyl alkyl ethers containing fluorines. Some of the molecules are perfluorinated and others include hydrogen, bromine, and chlorine substituents. New generalizations regarding FF spin-spin coupling are developed and used, along with previously recognized correlations, in the confirmation of structures and the assignments of resonances. 13C spectroscopy, especially the analysis of 13C19F coupling, is critical in several of the structure determinations. Chlorine isotope effects on fluorine chemical shifts are observed when the chlorine and fluorine are attached to the same carbon, and are also used in the structure analyses. Long-range couplings between fluorines in the vinyl group and fluorines in the alkyl group are interpreted in terms of molecular geometry which allows certain of the alkyl fluorines to “touch” the fluorines cis and gem to the ether oxygen but not the fluorine trans to the oxygen. Two bond 13C19F coupling across the vinyl double bond is found to vary dramatically with the electronegativity of the vinyl substituents in the ethers, in accordance with previous observations for olefins.  相似文献   

13.
The intramolecular six-membered C–H?X (X=F, Cl, Br) hydrogen bonding motif of halogen-substituted 1,4-diphenyl-1,2,3-triazole compounds has been assessed. Twelve triazole derivatives have been designed and prepared, which bear fluorine, chlorine or bromine atoms on the ortho- and/or para-positions of the benzene rings. 1H NMR, X-ray crystallography, and DFT calculation investigations revealed that the ortho-fluorine, chlorine, and bromine atoms of the benzene ring on the C-4 of the triazole unit all can form six-membered C–H?X hydrogen bonding. In contrast, only fluorine forms similar, relatively stable intramolecular hydrogen bonding on the N-1 side of the triazole unit.  相似文献   

14.
Since the first sulfur-nitrogen-fluorine compounds were synthesized 25 years ago[2], great progress has been made in this field of covalent fluorine chemistry[3–9]. The two small molecules thiazyl fluoride (NSF) and thiazyl trifluoride (NSF3), are key substances; nearly all sulfur-nitrogen-fluorine compounds can be derived from them.  相似文献   

15.
The NMR spectrum of acrolein and acroyl fluoride (CH2?CH? COX with X?H and F) oriented in a nematic phase has been measured and information about conformational equilibrium s-cis ? s-trans has been obtained. The barrier to internal rotation of the COX group has been studied with various hypotheses. Good agreement between experimental and calculated spectra has been obtained using the potential equation V(?) = ΣnVn(1 – cos n?)/2, with V1 = ?200 cal mol?1, V2 = 1500 cal mol?1 and V3 = 400 cal mol?1 for the fluorine compound, and V1 = 1200 cal mol?1, V2 = 3000 cal mol?1 and V3 = 2000 cal mol?1 for acrolein; this last compound is found to be mostly in the s-trans conformation.  相似文献   

16.
Sulfur(VI)-fluoride exchange (SuFEx) chemistry, an all-encompassing term for substitution events that replace fluoride at an electrophilic sulfur(VI), enables the rapid and flexible assembly of linkages around a SVI core. Although a myriad of nucleophiles and applications works very well with the SuFEx concept, the electrophile design has remained largely SO2-based. Here, we introduce S≡N-based fluorosulfur(VI) reagents to the realm of SuFEx chemistry. Thiazyl trifluoride (NSF3) gas is shown to serve as an excellent parent compound and SuFEx hub to efficiently synthesize mono- and disubstituted fluorothiazynes in an ex situ generation workflow. Gaseous NSF3 was evolved from commercial reagents in a nearly quantitative fashion at ambient conditions. Moreover, the mono-substituted thiazynes could be extended further as SuFEx handles and be engaged in the synthesis of unsymmetrically disubstituted thiazynes. These results provide valuable insights into the versatility of these understudied sulfur functionalities paving the way for future applications.  相似文献   

17.
The first trifluoromethylthiolation and [18F]trifluoromethylthiolation of alkyl electrophiles with in situ generated difluorocarbene in the presence of elemental sulfur and external (radioactive) fluoride ion is described. This transition‐metal‐free approach is high yielding, compatible with a variety of functional groups, and operated under mild reaction conditions. The conceptual advantage of this exogenous‐fluoride‐mediated transformation enables unprecedented syntheses of [18F]CF3S‐labeled molecules from most commonly used [18F]fluoride ions. The rapid radiochemical reaction time (≤1 min) and high functional‐group tolerance allow access to a variety of aliphatic [18F]CF3S compounds in high yields.  相似文献   

18.
The parent (H2N? S? F) and N,N‐dialkyl‐substituted fluorides of amidosulfoxylic acid (R2N? S? F, R?Me or R2N?Morph) as well as the related compounds X? S? F (X?CH3, OH, F, SiH3, PH2, SH, Cl) have been investigated with quantum chemical calculations at the ab initio (MP2) level of approximation. The geometries, electronic structures, molecular orbital (MO) energies and NMR chemical shift values have been calculated to evaluate the role and extent of the polarization and delocalization effects in forming of the high‐field fluorine NMR resonances within the series of interest. The δF magnitudes for all investigated fluorides of amidosulfoxylic acid as well as the δN value calculated for Me2N? S? F are in the good agreement with the 19F and 14N NMR chemical shift values measured experimentally. For the parent compounds, H2N? S? F and H2N? SO2? F, the orientation of principal axes of the magnetic shielding tensors and the corresponding principal σii values along these axes have been qualitatively interpreted basing on the analysis of the MO interactions in the presence of the rotating magnetic field. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
As model reactions for the introduction of [18F]fluorine into aromatic amino acids, the replacement of NO2 by [18F]fluoride ion in mono- to tetra-methoxy-substituted ortho-nitrobenzaldehydes was systematically investigated. Unexpectedly, the highly methoxylated precursors 2,3,4-trimethoxy-6-nitrobenzaldehyde and 2,3,4,5-tetramethoxy-6-nitrobenzaldehyde showed high maximum radiochemical yields (82% and 48% respectively). When the electrophilicity of the leaving group substituted carbon atom is expressed by its 13C NMR chemical shift a good correlation with the reaction rate at the beginning of the reaction (first min) was found (R2 = 0.89), whereas the maximum radiochemical yields correlated much poorer with this electrophilicity parameter. This may be caused by side reactions becoming influencial in the further reaction course. As possible side reactions the demethylation of methoxy groups and intramolecular redox reactions could be detected by HPLC/MS.  相似文献   

20.
The photochemistry of p-fluoranil in dioxane was studied by electron spin resonance (ESR) and the ESR-rotating sector technique. The transient photoradical is identified as the p-tetrafluorobenzosemiquinone neutral radical with a hyperfine splitting of 1.1 gauss for the hydroxy proton and the fluorine hyperfine splittings of 3.8 and 14.1 gauss for the meta and ortho fluorines, respectively. The radicals decayed by self-disproportionation with a second-order rate constant at room temperature of approximately 3.2 × 109M?1s?1. The activation energy of the decay process is found to be about 2.4 ± 0.4 kcal/mole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号