首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-(1′-cis,3′-cis-)- and 2-(1′-cis,3′-trans-Penta-1′,3′-dienyl)-phenol (cis, cis- 4 and cis, trans- 4 , cf. scheme 1) rearrange thermally at 85–110° via [1,7 a] hydrogen shifts to yield the o-quinomethide 2 (R ? CH3) which rapidly cyclises to give 2-ethyl-2H-chromene ( 7 ). The trans formation of cis, cis- and cis, trans- 4 into 7 is accompanied by a thermal cis, trans isomerisation of the 3′ double bond in 4. The isomerisation indicates that [1,7 a] hydrogen shifts in 2 compete with the electrocyclic ring closure of 2 . The isomeric phenols, trans, trans- and trans, cis- 4 , are stable at 85–110° but at 190° rearrange also to form 7 . This rearrangement is induced by a thermal cis, trans isomerisation of the 1′ double bond which occurs via [1, 5s] hydrogen shifts. Deuterium labelling experiments show that the chromene 7 is in equilibrium with the o-quinomethide 2 (R ? CH3), at 210°. Thus, when 2-benzyl-2H-chromene ( 9 ) or 2-(1′-trans,3′-trans,-4′-phenyl-buta1′,3′-dienyl)-phenol (trans, trans- 6 ) is heated in diglyme solution at >200°, an equilibrium mixture of both compounds (~ 55% 9 and 45% 6 ) is obtained.  相似文献   

2.
cis, cis-, cis, trans- and trans, trans-o-Dipropenylbenzene (cis, cis-, cis, trans- and trans, trans- 1 ) were prepared. At 225° cis, cis- 1 isomerises to give cis, trans- 1 and vice versa. The isomerisation follows 1. order kinetics. At equilibrium 89% cis, trans- and 11% cis, cis- 1 are present. It is shown by deuterium labelling that the isomerisation is due to aromatic [1, 7 a] sigmatropic H-shifts. trans, trans- 1 rearranges at 225° to yield 2, 3-dimethyl-1, 2-dihydronaphthalene ( 3 ). This can be visualized by disrotatory ring closure of trans, trans- 1 followed by an aromatic [1, 5 s] H-shift. When cis, cis- or cis, trans- 1 are heated for 153 hrs at 225° a small amount (3%) of 1-ethyl-1,2-dihydronaphthalene ( 5 ) is formed.  相似文献   

3.
Investigations on Aromatic Amino-Claisen Rearrangements The thermal and acid catalysed rearrangement of p-substituted N-(1′,1′-dimethylallyl)anilines (p-substituent=H (5) , CH3 (6) , iso-C3H7 (7) , Cl (8) , OCH3 (9) , CN (10) ), of N-(1′,1′-dimethylallyl)-2,6-dimethylaniline (11) , of o-substituted N-(1′-methylallyl)anilines (o-substituent=H (12) , CH3 (13) , t-C4H9 (14) , of (E)- and (Z)-N-(2′-butenyl)aniline ((E)- and (Z)- 16 ), of N-(3′-methyl-2′-butenylaniline (17) and of N-allyl- (1) and N-allyl-N-methylaniline (15) was investigated (cf. Scheme 3). The thermal transformations were normally conducted in 3-methyl-2-butanol (MBO), the acid catalysed rearrangements in 2N -0,1N sulfuric acid. - Thermal rearrangements. The N-(1′,1′-dimethylallyl)anilines rearrange in MBO at 200-260° with the exception of the p-cyano compound 10 in a clean reaction to give the corresponding 2-(3′-methyl-2′-butenyl)anilines 22–26 (Table 2 and 3). The amount of splitting into the anilines is <4% ( 10 gives ? 40% splitting). The secondary kinetic deuterium isotope effect (SKIDI) of the rearrangement of 5 and its 2′,3′,3′-d3-isomer 5 amounts to 0.89±0.09 at 260° (Table 4). This indicates that the partial formation of the new s?-bond C(2), C(3′) occurs already in the transition state, as is known from other established [3,3]-sigmatropic rearrangements. The rearrangement of the N-(1′-methylallyl)anilines 12–14 in MBO takes place at 290–310° to give (E)/(Z)-mixtures of the corresponding 2-(2′-Butenyl)anilines ((E)- and (Z)- 30,-31 , and -32 ) besides the parent anilines (5–23%). Since a dependence is observed between the (E)/(Z)-ratio and the bulkiness of the o-substituent (H: (E)- 30 /(Z)- 30 =4,9; t-C4H9: (E)- 32 /(Z)- 32 =35.5; cf. Table 6), it can be concluded, that the thermal amino-Claisen rearrangement occurs preferentially via a chair-like transition state (Scheme 22). Methyl substitution at C(3′) in the allyl chain hinders the thermal amino-Claisen-rearrangement almost completely, since heating of (E)-and (Z)- 16 , in MBO at 335° leads to the formation of the expected 2-(1′-methyl-allyl) aniline (33) to an extent of only 12 and 5%, respectively (Scheme 9). The main reaction (?60%) represents the splitting into aniline. This is the only observable reaction in the case of 17 . The inversion of the allyl chain in 16 - (E)- and (Z)- 30 cannot be detected - indicated that 33 is also formed in a [3, 3]-sigmatropic process. This is also true for the thermal transformation of N-allyl- (1) and N-allyl-N-methylaniline (15) into 2 and 34 , respectively, since the thermal rearrangement of 2′, 3′, 3′-d3- 1 yields 1′, 1′, 2′-d3- 2 exclusively (Table 8). These reaction are accompanied to an appreciable extent by homolysis of the N, C (1′) bond: compound 1 yields up to 40% of aniline and 15 even 60% of N-methylaniline ((Scheme 10 and 11). The activation parameters were determined for the thermal rearrangements of 1, 5, 12 and 15 in MBO (Table 22). All rearrangements show little solvent dependence (Table 5, 7 and 9). The observed ΔH values are in the range of 34-40 kcal/mol and the ΔS values very between -13 to -19 e.u. These values are only compatible with a cyclic six-membered transition state of little polarity. - Acid catalysed rearrangements. - The rearrangement of the N-(1′, 1′-dimethylallyl) anilines 5-10 occurs in 2N sulfuric acid already at 50-70° to give te 2-(3′-methyl-2′-butenyl)anilines 22-27 accompanied by their hydrated forms, i.e. the 2-(3′-hydroxy-3′-methylbutyl) anilines 35-40 (Tables 10 and 11). The latter are no more present when the rearrangement is conducted in 0.1 N sulfuric acid, whilst the rate of rearrangement is practically the same as in 2 N sulfuric acid (Table 12). The acid catalysed rearrangements take place with almost no splitting. The SKIDI of the rearrangement of 5 and 2′, 3′, 3′-d3- 5 is 0.84±0.08 (2 N H2SO4, 67, 5°, cf. Table 13) and thus in accordance with a [3,3]-sigmatropic process which occurs in the corresponding anilinium ions. Consequently, the rearrangement of a 1:1 mixture of 2′, 3′, 3′-d3- 5 and 3, 5-d2- 5 in 2 N sulfuric acid at 67, 5° occurs without the formation of cross-products (Scheme 13). In the acid catalysed rearrangement of the N-1′-methylallyl) anilines 12-14 at 105-125° in 2 N sulfuric acid the corresponding (E)- and (Z)-anilines are the only products formed (Table 14 and 15). Again no splitting is observed. Furthermore, a dependence of the observed (E)/(Z) ratio and the bulkiness of the o-substituent ( H : (E)/(Z)- 30 = 6.5; t- C 4 H 9: (E)- 32 /(Z)- 32 = 90; cf. Table 15) indicates that also in the ammonium-Claisen rearrangement a chair-like transition state is preferentially adopted. In contrast to the thermal rearrangement the acid catalysed transformation in 2 N-O, 1 N sulfuric acid (150-170°) of (E)- and (Z)- 16 as well as of 1 and 15 , occurs very cleanly to yield the corresponding 2-allylated anilines 33, 2 and 34 (Scheme 15 and 18). The amounts of the anilines formed by splitting are <2%. During longer reaction periods hydration of the allyl chain of the products occurs, and in the case of the rearrangement of (E)- and )Z)- 16 the indoline 45 is formed (Scheme 15 and 18). All transformations occur with inversion of the allyl chain. This holds also for the rearrangement of 1 , since 3′, 3′-d2- 1 gives only 1′, 1′-d2- 2 (Scheme 17). The activation parameters were determined for the acid catalysed rearrangement of 1, 5, 12 and 15 in 2 N sulfuric acid (Table 22). The ΔH values of 27-30 kcal-mol and the ΔS values of +9 to -12 e.u. are in agreement with a [3, 3]-sigmatropic process in the corresponding anilinium ions. The acceleration factors (kH+/kΔ) calculated from the activation parameters of the acid catalysed and thermal rearrangements of the anilines are in the order of 105 - 107. They demonstrate that the essential driving force of the ammonium-Claisen rearrangement is the ‘delocalisation of the positive charge’ in the transition state of these rearrangements (cf. Table 23). Solvation effects in the anilinium ions, which can be influenced sterically, also seem to play a role. This is impressively demonstrated by N-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (11) : its rearrangement into 4-(1′, 1′-dimethylallyl)-2, 6-dimethylaniline (43) cannot be achieved thermally, but occurs readily at 30° in 2 N sulfuric acid. From a preparative standpoint the acid catalysed rearrangement in 2 N-0, 1 N sulfuric acid of N-allylanilines into 2-allylanilines, or if the o-positions are occupied into 4-allylanilines, is without doubt a useful synthetic method (cf. also [17]).  相似文献   

4.
Mesitylallene ( 6a ), 1-mesityl-3-methyl-allene ( 6b ) and 1-mesityl-3, 3-dimethylallene ( 6c ) were prepared via dienol-benzene-rearrangements. At 170° 6a isomerises to give 5, 7-dimethyl-1, 2-dihydronaphthalene ( 8 ). Under the same conditions 6b rearranges to give 2, 5, 7-trimethyl-1, 2-dihydronaphthalene ( 10 ; 60%) and cis-1-mesitylbuta-1, 3-diene ( 11 ; 40%) while 6c gives only cis-1-mesityl-3-methyl-buta-1, 3-diene ( 13 ). The allenes undergo first an aromatic [1, 5 s]-sigmatropic H-shift to the o-xylylene derivatives 7, 9 and 12 , which then exhibit disrotatory ring closure to the dihydronaphthalenes or aromatic [1, 7 a]-sigmatropic H-shift to the 1-mesitylbuta-1, 3-dienes.  相似文献   

5.
It is shown that (−)-(S)-N,N-dimethyl-2-(1′-methylallyl)aniline ((−)-(S)- 4 ), on direct irradiation in MeCN at 20°, undergoes in its lowest-lying triplet state an aromatic di-π-methane (ADPM) rearrangement to yield (−)-(1′R,2′R)- and (+)-(1′R,2′S)-N,N-dimethyl-2-(2-methylcyclopropyl)aniline ((−)-trans- and (+)-cis- 7 ) in an initial trans/cis ratio of 4.71 ± 0.14 and in optical yields of 28.8 ± 5.2% and 15 ± 5%, respectively. The ADPM rearrangement of (−)-(S)- 4 to the trans- and cis-configurated products occurs with a preponderance of the path leading to retention of configuration at the pivot atom (C(1′) in the reactant and C(2′) in the products) for (−)-trans- 7 and to inversion of configuration for (+)-cis- 7 , respectively. The results can be rationalized by assuming reaction paths which involve the occurrence of discrete 1,4- and 1,3-diradicals (cf. Schemes 10, 12, and 13). A general analysis of such ADPM rearrangements which allows the classification of these photochemical reactions in terms of borderline cases is presented (Scheme 14). It is found that the optical yields in these ‘step-by-step’ rearrangements are determined by the first step, i.e. by the disrotatory bond formation between C(2) of the aromatic moiety and C(2′) of the allylic side chain leading to the generation of the 1,4-diradicals. Moderation of the optical yields can occur in the ring closure of the 1,3-diradicals to the final products, which may take place with different trans/cis-ratios for the individual 1,3-diradicals. Compounds (−)-trans- 7 as well as (+)-cis- 7 easily undergo the well-known photochemical trans/cis-isomerization. It mainly leads to racemization. However, a small part of the molecules shows trans/cis-isomerization with inversion of configuration at C(1′), which is best explained by a photochemical cleavage of the C(1′)–C(3′) bond.  相似文献   

6.
1-Hydroxy-2-methyl-2-(penta-2,4-dienyl)-1,2-dihydronaphthalene ( 2 ), on treatment with 0,75N H2SO4 in ether at 0°, underwent a [1s, 2s]-sigmatropic rearrangement to give 2-methyl-1-(penta-2,4-dienyl)-naphthalene ( 5 ), cf. scheme 2. 2-Hydroxy-1-methyl-1-(penta-2,4-dienyl)-1,2-dihydronaphthalene ( 4 ) under the same conditions gave 38% of the [1s, 2s]-product 1-methyl-2-(penta-2,4-dienyl)-naphthalene ( 6 ), together with 26% 1-methylnaphthalene, 21% 1-methyl-4-(penta-2,4-dienyl)-naphthalene ( 7 ) and 1% 1-methyl-5-(penta-2,4-dienyl)-naphthalene ( 8 ), cf. scheme 2. Most likely the latter two naphthalene derivatives at least are products of an intermolecular process.  相似文献   

7.
Optically Active 4,5-Epoxy-4,5-dihydro-α-ionones; Synthesis of the Stereoisomeric 4,5:4′,5′-Diepoxy-4,5,4′,5′-tetrahydro-?,?-carotenes and the Steric Course of their Hydrolysis We prove that epoxidation with peracid of α-ionone, contrary to a recently published statement, predominantly leads to the cis-epoxide. Acid hydrolysis affords a single 4,5-glycol whose structure, established by an X-ray analysis, shows that oxirane opening occurred with inversion at the least substituted position (C(4)). Stable cis-and trans-epoxides are prepared by epoxidation of the C15-phosphonates derived from α-ionone. Both the racemic and optically active form are used for the synthesis of the 4,5:4′,5′-diepoxy-4,5,4′,5′-tetrahydro-?,?-carotenes having the following configuration in the end groups: meso-cis/cis, meso-trans/trans, rac-cis/trans, rac- and (6R, 6′ R)-cis/cis, rac- and (6R, 6′R)-trans/trans, rac- and (6R, 6′R)-cis/trans, and (6R, 6′ R)-cis/?. Acid hydrolysis of the cis/cis-epoxycarotenoids under relatively strong conditions occurs again with inversion at C(4)/C(4′) in case of the cis/cis-epoxycarotenoids, but at C(5)/C(5′) in case of the trans/trans-epoxycarotenoids. An independent synthesis of this 4,5,4′,5′-tetrahydro-?,?-carotene-4,5,4′,5′-tetrol is presented. The irregular results of the oxirane hydrolysis are explained by assumption of neighbouring effects of the lateral chain. 400-Mz-1H-NMR data are given for each of the stereoisomeric sets. In the visible range of the CD spectra, the (6R, 6R′)-epoxycarotenoids compared with (6R, 6R′)-?,?-carotene exhibit an inversion of the Cotton effects.  相似文献   

8.
The photolysis of SO2 at 3130 Å, FWHM = 165 Å, and 22°C has been investigated in the presence of cis- and trans-2-pentene. Quantum yields for the SO2 photosensitized isomerization of one isomer to the other have been made for a variation in the [SO2]/[C5H10] ratio of 3.41–366 for cis-2-C5H10 and of 1.28–367 for trans-2-C5H10. A kinetic analysis of each of these systems permitted new estimates to be made for the SO2 collisionally induced intersystem crossing ratio at 3130 Å from SO2(1B1) to SO2(3B1). The estimates of k1a/(k1a + k1b) obtained are 0.12 ± 0.01 and 0.12 ± 0.02 (two different kinetic analyses in the cis-2-C5H10 study) and 0.20 ± 0.05 and 0.20 ± 0.04 (two different kinetic analyses in the trans-2-C5H10 study). Collisionally induced intersystem crossing ratios of k2a/(k2a + k2b) = 0.51 ± 0.10 and k3a/(k3a + k3b) = 0.62 ± 0.12 were obtained for cis- and trans-2-pentene, respectively. Quenching rate constants at 22°C for removal of SO2(3B1) molecules by cis- and trans-2-C5H10 were estimated as (1.00 ± 0.29) × 1011 l./mole·sec and (0.857 ± 0.160) × 1011 l./mole/sec, respectively. Prolonged irradiations, extrapolated to infinite irradiation times, for mixtures initially containing SO2 and pure isomer, either the cis or trans, yielded a photostationary composition of [trans-2-pentene]/[cis-2-pentene] = 2.1 ± 0.1.  相似文献   

9.
A series of 2,2′:6′,2″-terpyridine (TPY) based aromatic heterocyclic compounds, extended by thiophene, 4-dibenzothiophene, and thiazole units at the para position of the central pyridine ring in TPY, are described in this paper. A new compound, 4′-(4′-dibenbenzothiophene-5-thiophene-2-yl)-2,2′:6′,2″-terpyridine (La), serves as a tridentate ligand to react with Cu(NO3)2·3H2O and CuCl2·2H2O, respectively, to produce two different Cu(II) complexes [Cu(La)2](NO3)2 and [CuLaCl2] with 1?:?2 and 1?:?1 metal/ligand ratios. Dibenzothiophene is first introduced to TPY via the thiophene bridge. The alterations in cis and trans configuration, dihedral angles between adjacent aromatic rings, and photophysical properties have been observed before and after Cu(II) complexation, which has been verified by their crystal structures, UV–vis and fluorescence spectra.  相似文献   

10.
The acid-catalyzed rearrangement of N-(1′,1′-dimethylprop-2′-ynyl)-, N-(1′-methylprop-2′-ynyl)-, and N-(1′-arylprop-2′-ynyl)-2,6-, 2,4,6-, 2,3,5,6-, and 2,3,4,5,6-substituted anilines in mixtures of 1N aqueous H2SO4 and ROH such as EtOH, PrOH, BuOH etc., or in CDCl3 or CCl4 in the presence of 4 to 9 mol-equiv. trifluoroacetic acid (TFA)has been investigated (cf. Scheme 12-25 and Tables 6 and 7). The rearrangement of N-(3′-X-1′,1′-dimethyl-prop-2′-ynyl)-2,6- and 2,4,6-trimethylanilines (X = Cl, Br, I) in CDCl3/TFA occurs already at 20° with τ1/2 of ca. 1 to 5 h to yield the corresponding 6-(1-X-3′-methylbuta-1,2′-dienyl)-2,6-dimethyl- or 2,4,6-trimethylcyclohexa-2,4-dien-1-iminium ions (cf. Scheme 13 and Footnotes 26 and 34) When the 4 position is not substituted, a consecutive [3,3]-sigmatropic rearrangement takes place to yield 2,6-dimethyl-4-(3′-X-1′,1′-dimethylprop-2′-ynyl)anilines (cf. Footnotes 26 and 34). A comparable behavior is exhibited by N-(3′-chloro-1′-phenylprop-2′-ynyl)-2,6-dimethylaniline ( 45 ., cf. Table 7). The acid-catalyzed rearrangement of the anilines with a Cl substituent at C(3′) in 1N aqueous H2SO4/ROH at 85-95°, in addition, leads to the formation of 7-chlorotricyclo[3.2.1.02,7]oct-3-en-8-ones as the result of an intramolecular Diels-Alder reaction of the primarily formed iminium ions followed by hydrolysis of the iminium function (or vice versa; cf. Schemes 13,23, and 25 as well as Table 7). When there is no X substituent at C(1′) of the iminium-ion intermediate, a [1,2]-sigmatropic shift of the allenyl moiety at C(6) occurs in competition to the [3,3]-sigmatropic rearrangement to yield the corresponding 3-allenyl-substituted anilines (cf. Schemes 12,14–18, and 20 as well as Tables 6 and 7). The rearrangement of (?)?(S)-N-(1′-phenylprop-2′-ynyl)-2,6-dimethylaniline ((?)- 38 ; cf. Table 7) in a mixture of 1N H2SO4/PrOH at 86° leads to the formation of (?)-(R)-3-(3′-phenylpropa-1′,2′-dienyl)-2,6-dimethylaniline ((?)- 91 ), (+)-(E)- and (?)-(Z)-6-benzylidene-1,5-dimethyltricyclo[3.2.1.02′7]oct-3-en-8-one ((+)-(E)- and (?)-(Z)- 92 , respectively), and (?)-(S)-2,6-dimethyl-4-( 1′-phenylprop-2′-ynyl)aniline((?)- 93 ). Recovered starting material (10%) showed a loss of 18% of its original optical purity. On the other hand, (+)-(E)- and (?)-(Z)- 92 showed the same optical purity as (minus;)- 38 , as expected for intramolecular concerted processes. The CD of (+)-(E)- and (?)-(Z)- 92 clearly showed that their tricyclic skeletons possess enantiomorphic structures (cf. Fig. 1). Similar results were obtained from the acid-catalyzed rearrangement of (?)-(S)-N-(3′-chloro-1′phenylprop-2′-ynyl)-2,6-dimethylaniline ((?)- 45 ; cf. Table 7). The recovered starting material exhibited in this case a loss of 48% of its original optical purity, showing that the Cl substituent favors the heterolytic cleavage of the N–C(1′) bond in (?)- 45. A still higher degree (78%) of loss of optical activity of the starting aniline was observed in the acid-catalyzed rearrangement of (?)-(S)-2,6-dimethyl-N-[1′-(p-tolyl)prop-2′-ynyl]aniline ((?)- 42 ; cf. Scheme 25). N-[1′-(p-anisyl)prop-2-ynyl]-2,4,6-trimethylaniline( 43 ; cf. Scheme 25) underwent no acid-catalyzed [3,3]-sigmatropic rearrangement at all. The acid-catalyzed rearrangement of N-(1′,1′-dimethylprop-2′-ynyl)aniline ( 25 ; cf. Scheme 10) in 1N H2SO4/BuOH at 100° led to no product formation due to the sensitivity of the expected product 53 against the reaction conditions. On the other hand, the acid-catalyzed rearrangement of the corresponding 3′-Cl derivative at 130° in aqueous H2SO4 in ethylene glycol led to the formation of 1,2,3,4-tetrahydro-2,2-dimethylquinolin-4-on ( 54 ; cf. Scheme 10), the hydrolysis product of the expected 4-chloro-1,2-dihydro-2,2-dimethylquinoline ( 56 ). Similarly, the acid-catalyzed rearrangement of N-(3′-bromo-1′-methylprop-2′-ynyl)-2,6-diisopropylaniline ( 37 ; cf. Scheme 21) yielded, by loss of one i-Pr group, 1,2,3,4-tetrahydro-8-isopropyl-2-methylquinolin-4-one ( 59 ).  相似文献   

11.
A study of the pressure dependence of the C5 products from the reaction of cis-butene-2 and methylene is reported. Methylene was produced by the photolysis of diazomethane with 4358 Å light at 23° or 56°, and by photolysis of ketene with 3200 Å radiation at 23° or 100°. The change with increasing pressure of the relative amounts of the characteristically “triplet products” (trans-1,2-dimethylcyclopropane, trans-pentene-2 (TP2), and 3-methylbutene-1 (3MB1)) and “singlet products” (cis-1,2-dimethylcyclopropane (CDMC) and cis-pentene-2 (CP2)) are discussed. The behavior is reminiscent of that found in 3CH2-cis-butene-2 systems and can be interpreted in terms of the rapid rate of rearrangement of an initial triplet diradical product component, due to 3CH2, relative to the slower rate and readier collisional stabilization of an initial vibrationally-excited dimethyl cyclopropane product component, due to 1CH2. Relative rates of reactions of 1CH2 with allylic CH:vinyl CH:C?C in the neat liquid were, for diazomethane, 1:1.1:7.2 and, for ketene, 1:1.2:6.7.  相似文献   

12.
The reversible isomerization of cis-hepta-1,3-diene to cis-2-trans-4-heptadiene via a 1,5 hydrogen shift has been investigated kinetically at nine temperatures in the range of 475° to 531°K. Equilibrium is reached near 94% reaction. Some cis-2-cis-4-heptadiene is also formed, but at a rate some 60 times slower than the cis,trans isomer. A least-squares analysis of the data yielded the Arrhenius equation for the isomerization of the cis-hepta-1,3-diene: Possible errors in the equilibrium constant measurements are discussed, and employing an equilibrium constant calculated by using group additivity estimates together with the values of k1, we obtained for the reverse reaction where .  相似文献   

13.
The photochemistry of the triplets of 10- and 11-membered ring 1,3,5-trienes has been studied. At ?70° cis,trans,cis-cyclodeca-1,3,5-triene goes only to the cis,cis,cis-isomer. At 25°, this latter compound is converted into cis-bicyclo[4.4.0]deca-2,4-diene via the thermally labile trans,cis,trans-cyclodeca-1,3,5-triene. At ?70° cis,trans,cis-cycloundeca-1,3,5-triene is converted to the cis,cis,cis-isomer. At 25°, this primary ptotochemical product undergoes a thermal 1,7-sigmatropic hydrogen migration to yield the trans,cis,cis, isomer. This latter triene upon sensitized irradiation yields cis-bicyclo[5.4.0]undeca-8,10-diene and trans-bicyclo[7.2.0]undeca-2,10-diene. The ratio of these latter two products changes with the temperature of the sensitized reaction. The possible mechanisims of these transformations are discussed.  相似文献   

14.
The photoisomerization of retinal   总被引:1,自引:0,他引:1  
Abstract— –Quantum efficiencies have been measured for the photoisomerization of four stereoisomers of retinal (all-trans, 13-cis, 11 cis, and 9-cis) in two solvents at different wavelengths of irradiation and at various temperatures. In heane at 25°C the quantum efficiencies for isomerization at 365 nm are: 9-cis to trans, 0.5; 13-cis to trans, 0.4; 11-cis to trans, 0.2; all-trans to monocis isomers, 0.2-0.06, depending upon assumptions made regarding the stereo-isomeric composition of the product. These values vary somewhat with the wavelength of the irradiating light. The quantum efficiency for the photoisomerization of all-trans retinal in hexane decreases by a factor of 30 when the temperature is lowered from 25° to – 65°C; the activation energy for this photoisomerization is about 5 kcal/mole. The quantum efficiencies for the isomerization of the monocis isomers to all-trans retinal in hexane are virtually independent of temperature. In ethanol the rates of photoisomerization from trans to cis or cis to trans depend only slightly on the temperature between 25° and – 65°C. The photosensitivities of the stereoisomers of retinal are of the same order of magnitude as those of the retinylidene chromophores of rhodopsin (11 -cis), metarhodopsin I (all-trans), and isorhodopsin (9-cis); but it is not yet possible to derive the photochemistry of rhodopsin uniquely and quantitatively from that of retinal.  相似文献   

15.
Acid-mediated cyclisation of trienone 8 , readily available from 2,3-dimethylbutanal ( 1 ; five steps: 47% yield), using fluorosulfonic acid (6.8 mol-equiv.) in 2-nitropropane at ?70°, afforded a 14:9:1 mixture (70% yield) of (±)-cis-α-irone ( 9 ), (±)-trans-α-irone ( 10 ), and (±)-β-irone ( 11 ). Other acidic conditions examined, using 95% aq. H2SO4 solution, 85% aq. H3PO4 solution, or SnCl4, gave inferior results.  相似文献   

16.
Mechanism of the Photochemical Addition of Methanol to 2-Allylated Anilines We studied in methanol the photoreaction of the 2-allylated anilines, given in Scheme 3 (cf. also [ 1 ]). Irradiation of N-methyl-2-(1′-methylallyl)aniline ( 15 ) with a high pressure mercury lamp yielded trans- and cis-1,2,3-trimethylindoline (trans- and (cis- 34 ) as well as erythro- and threo-2-(2′-methoxy-1′-methylpropyl)-N-methylaniline (erythro- and threo- 35 ; Scheme 7). When the corresponding aniline d3- 15 , specifically deuterated in the 1′-methyl group, was irradiated in methanol, a mixture of trans- and cis-d3- 34 , and of erythro- and threo-d3- 35 was obtained. Successive dehydrogenation of the mixture of cis/trans-d3- 34 by Pd/C in boiling xylene and by MnO2 in boiling benzene lead to the corresponding indole d3- 36 (cf. Scheme 9), the 1H- and 2H-NMR. spectra of which showed that both cis-d3- and trans-d3- 34 had bound the deuterium labeled methyl group exclusively at C(3). The 1H- and 2H-NMR. analyses of the separated methanol addition products revealed that erythro-d3- 35 contained the deuterium label to at least 95% in the methyl group at C(1′), and threo-d3- 35 to 50% in CH3? C(1′) and to 50% in CH3? C(2′) (cf. Scheme 9). To confirm these results 2-(1′-ethylallyl)aniline ( 16 ) was irradiated in methanol, whereby a complex mixture of at least 6 products was obtained (cf. Scheme 11). Two products were identified as trans- and cis-3-ethyl-2-methylindoline (trans- and cis- 37 ). The four other products represented erythro- and threo-2-(1′-ethyl-2′-methoxypropyl)aniline (erythro- and threo- 39 ) as major components, and erythro- and threo-2-(2′-methoxy-1′-methylbutyl)aniline (erythro- and threo- 40 ). These results clearly demonstrate that the methanol addition products must arise from spirodienimine intermediates of the type of trans- 9 and cis- 11 (R1 = CD3 or C2H5, R2 = CH3 or H; Scheme 2) which are opened solvolytically with inversion of configuration by methanol. Thus, cis- 11 (R1 = CD3, R2 = CH3) must lead to a 1:1 mixture of threo- 13 and threo- 14 (i.e.) a 1:1 distribution of the deuterium labelled methyl group between C(1′) and C(2′) in threo- 35 ) The formation of erythro-d3- 35 with at least 95% of the deuterium label in the methyl group at C(1′) indicates that trans- 9 (R1 = CD3, R2 = CH3) reacts with methanol regioselectively (> 95%) at the C(2), C(3) bond. Similarly, the formation of the methanol addition products in the photoreaction of 16 (Scheme 11) can be explained. Since the indolines, formed in both photoreactions, show no alteration in the position of the subsituent at C(1′) with respect to the starting material we suppose that the diradical 7 (R1 = CD3 or C2H5, R2 = CH3 or H; Scheme 2) is a common intermediate which undergoes competetive 1.3 and 1.5 ring closure yielding the spirodienimines and the indolines. This conception is supported by irradiation experiments with N, 3,5-trimethyl-2-(1′-methylally)aniline ( 17 ) and 2-(2′-cyclohexenyl)-N-methylaniline ( 18 ) in methanol. In the former case the formation of spirodienimines is hindered by the methyl group at C(3) for steric reasons, thus leading to a ratio of the indoline to the methoxy compounds of about 6.3 as compared with ca. 1.0 for 15 (cf. Scheme 12). On the other hand, no methoxy compounds could be detected in the reaction mixture of 18 (cf. Scheme 13) which indicates that in this case the 1.3 ring closure cannot compete with the 1.5 cyclization in the corresponding cyclic diradical of the type 7 (R1–C(1′)–C(2′) is part of a six-membered ring; Scheme 2). We suppose that the diradicals of type 7 are formed by proton transfer in an intramolecular electron-donor-acceptor (EDA) complex arising from the excited single state of the aniline chromophor and the allylic side chain. This idea is supported by the fluorescence specta of 2-allylated N-methylanilines (cf. Fig.1-4) which show pronounced differences with respect to the corresponding 2-alkylated anilines. Furthermore, the anilines 18 and 20 when irradiated in methanol in the presence of an excess of trans-1,3-pentadiene undergo preferentially an intermolecular addition to the diene, thus yielding the N-(1′-methyl-2′-butenyl)anilines 52 and 51 , respectively (Scheme 15), i.e. as one would expect the diene with its low lying LUMO is a better partner for an EDA complex than the double bond of the allylic side chain.  相似文献   

17.
The mechanism of but-1-ene, pent-1-ene and 3-methylbut-1-ene isomerization catalysed with trans-[PtH(SnX3)L2] (I, L = PPh3, PMePh2, PEt3, PPr3; X = Cl, Br) have been studied. Stoichiometric reactions of I with the alkenes proceed even at ?90°C giving cis-[Pt(alkyI-1) (SnX3) L2] (II). The equilibrium amounts of II are dependent on the nature of the phosphines, halogens and alkenes. The isomerization rates, determined at +20°C, change in parallel with the relative stabilities of II as a function of phosphine (PMePh2 > PPh3 > PAlk3) and halogen (Br > Cl), and decrease with methyl substitution at γ- and δ- carbons of the alkenes. 2-Substituted alk-1-enes undergo no isomerization in the reactions under investigation. When L is PPh3 or PMePh2, the main platinum-containing species in the course of the isomerization are trans-[Pt(alkyl-1) (SnX3)L2], appearing as a result of cis-trans isomerization of II. The conversion of I, L = PAlk3 into related trans-alkyl complexes, and oxidation of I, proceed more slowly than the isomerization of alkenes. The ratio of cis- to trans-alk-2-enes is dependent on the size of L and is a maximum for L = PPh3.  相似文献   

18.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of Four Linkage Isomeric Tetrachlorodirhodanoosmates(IV) By treatment of cis- or trans-[OsCl4I2]2? with (SCN)2 in dichloromethane the linkage isomers cis-[OsCl4(NCS)2]2? ( 1 ), trans-[OsCl4(NCS)(SCN)]2? ( 2 ), cis-[OsCl4(NCS)(SCN)]2? ( 3 ) and trans-[OsCl4(SCN)2]2? ( 4 ) are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-Ray structure determinations on single crystals of cis-(Ph4As)2[OsCl4(NCS)2] (triclinic, space group P1 , a = 10.019(5), b = 11.702(5), c = 21.922(5) Å, α = 83.602(5)°, β = 85.718(5)°, γ = 73.300(5)°, Z = 2), trans-(Ph4As)2[OsCl4 · (NCS)(SCN)] (monoclinic, space group P21/c, a = 18.025(5), b = 11.445(5), c = 23.437(5) Å, β = 94.208(5)°, Z = 4), cis-(Ph4As)2[OsCl4(NCS)(SCN)] (triclinic, space group P1 , a = 10.579(5), b = 11.682(5), c = 22.557(5) Å, α = 81.073(5)°, β = 85.807(5)°, γ = 87.677(5)°, Z = 2) and trans-(Ph4As)2 · [OsCl4(SCN)2] (triclinic, space group P1 , a = 10.615(5), b = 11.691(5), c = 11.907(5) Å, α = 111.314(5)°, β = 96.718(5)°, γ = 91.446(5)°, Z = 1) reveal the complete ordering of the complex anions. The via N or S coordinated thiocyanate groups are located nearly direct above one of the cis-positioned Cl ligands with Os? N? C angles of 171.2° and 174.3° ( 1 ), 162.3° ( 2 ), 172° ( 3 ) and Os? S? C angles of 108.3° ( 2 ), 105.7° ( 3 ) and 105.5° ( 4 ). Using the molecular parameters of the X-Ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salts of all four linkage isomers are assigned by normal coordinate analyses based on a modified valence force field. The valence force constants are fd(OsN) = 1.59 ( 1 ), 1.67 ( 2 ), 1.60 ( 3 ) and fd(OsS) = 1.27 ( 2 ), 1.31 ( 3 ) and 1.32 mdyn Å?1 ( 4 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved.  相似文献   

19.
N-Allyl-2-methylaniline ( 12 ) forms on heating at 140° in xylene in the presence of zinc chloride 2-allyl-6-methylanline ( 19 ) as major compound and 4-allyl-2-methylaniline ( 20 ) as well as 2,7-dimethyl-indoline ( 21 ) as minor products. Compound 21 is also formed when 19 is heated in the presence of zinc chloride (scheme 2). That 19 arises from a charge-induced [3s, 3s] sigmatropic rearrangement of 12 – and 20 from two consecutive [3s, 3s]-sigmatropic transformations – follows from the reaction of N-crotyl-2-methylaniline ( 13 ) in the presence of zinc chloride at 140°. 2-(1′-Methylallyl)-6-methylaniline ( 22 ) and 4-crotyl-2-methylaniline ( 23 ) are formed exclusively. Small amounts of 2,3,7-trimethyl-indoline ( 24 ) and 2-(cis- and trans-1′-methyl-propenyl)-6-methylaniline (cis- and trans- 25 ) are observed as by-products. Compound 24 arises from 22 in the presence of zinc chloride (scheme 3). Similar results are obtained when N-allyl and N-(2′-methylallyl)-N-methyl-aniline ( 14 and 15 , respectively) are heated in the presence of zinc chloride. Whereas 14 gives nearly exclusively 2-allyl-N-methyl-aniline ( 28 ) and only small amounts of the corresponding 1, 2-dimethyl-indoline ( 29 ) and of 2-(cis- and trans-propenyl)-N-methyl-aniline (cis- and trans- 27 ), 15 forms comparable amounts of 2-(2′-methylallyl)-N-methyl-aniline ( 30 ), 1,2,2-trimethyl-indoline ( 31 ), and 2-isobutenyl-N-methyl-aniline ( 32 ) (scheme 4). Compound 30 , and also 32 , are transformed into 31 on heating in the presence of zinc chloride. Charge-induced aromatic amino-Claisen rearrangements are also observed when N-allylated anilinium tetraphenylborates are heated at 100–105° in hexamethyl phosphoric acid triamide. Thus, N-allyl- and N-crotyl-N, N-dimethyl-anilinium tetraphenylborate ( 16 and 17 , respectively) yield 2-allyl- and 2-(1′-methylallyl)-N,N-dimethyl-aniline ( 33 and 34 , respectively) besides small amounts of N, N-dimethyl-aniline. N-Cinnamyl-N, N-dimethyl-anilinium tetraphenylborate ( 18 ) gives, besides appreciable amounts of N,N-dimethyl-aniline, a mixture of 2-(1′-phenylallyl)-,2-cinnamyl-, and 4-cinnamyl-N, N-dimethyl-aniline ( 35 , 36 , and 37 , respectively) in which the first two compounds predominate.  相似文献   

20.
A cyclodextrin-modified microemulsion electrokinetic chromatography method employing head column field-amplified sample stacking was developed for the analysis of arachidonic acid metabolites of the lipoxygenase pathways. The influence of the concentration of boric acid, the surfactant sodium dodecyl sulfate, the co-surfactant 1-butanol and the oil phase octane as well as the pH of the background electrolyte, the separation voltage and the separation temperature was studied. The optimized microemulsion consisting of 20 mM boric acid buffer, pH 9.0, 3.0 % (m/v) sodium dodecyl sulfate, 0.5 % (v/v) octane, 5.0 % (v/v) 1-butanol and 15 mM α-cyclodextrin enabled the separation of 20-hydroxy-leukotriene B4, leukotriene B4, 6-trans-leukotriene B4, 6-trans-12-epi-leukotriene B4, 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid, 12(S)-hydroxy-5,8,14-cis-10-trans-eicosatetraenoic acid, 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid as well as the internal standard prostaglandin B1 in <10 min employing a separation voltage of 17.5 kV at a temperature of 23 °C. A matrix peak from solid-phase extraction sample workup co-migrated with 5(S)-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid affecting peak integration. The addition of 5 % (v/v) 2-propanol to the microemulsion resulted in the separation of this eicosatetraenoic acid and the matrix components at the expense of analysis time and peak resolution between the diastereomers 6-trans-leukotriene B4 and 6-trans-12-epi-leukotriene B4. In summary, the MEEKC method appeared to be especially suitable for the more polar arachidonic acid metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号