首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation was carried out on the boiling heat transfer characteristics of water and R-11 on the outside of a horizontal heated tube in narrow spaces. Two kinds of heat transfer surfaces (roll-worked and smooth surfaces) were tested. The test section consisted of a narrow annular space formed by enclosing the heated tube in an isolated concentric outer tube with two horizontal slats on the top and bottom. The nucleate boiling heat transfer characteristics were investigated experimentally at atmospheric pressure. The experimental results indicated that a single roll-worked tube in bulk liquid showed better boiling heat transfer than a single smooth tube. In the narrow spaces, the boiling heat transfer coefficients for the smooth tube were considerably enhanced when the gap size was so selected as to take an optimum value. There was no clear optimum gap size for heat transfer enhancement for the roll-worked tube in the narrow spaces. Enhancement of boiling heat transfer in the narrow spaces for the roll-worked tube was not clearly observed in this experiment. Finally, the critical heat flux (CHF) for boiling heat transfer in narrow spaces can be predicted by using a proposed CHF correlation.  相似文献   

2.
In the frame of the JOULE 1 R&D programme of the Commission of the European Communities a project has been carried out on enhanced evaporation heat transfer surfaces. A specific investigation has been realised on refrigerant oil mixtures boiling in a planar confined space.An experimental investigation of the boiling phenomenon in the confined space between a 30 mm wide × 120 mm high, heated plate and an opposing, adiabatic plate was carried out. The heated surface was made of a copper-aluminium-nickel alloy (Ra = 1 micrometer) and a saturated R-113/SUNISO 3GS oil mixture at atmospheric pressure was used as the boiling fluid.The maximum heat flux tested was approximately 90% of CHF. The parameters investigated were the gap size (1–5 mm) and the oil concentration (1–7% by weight). It was again observed that confinement does not improve the nucleate boiling performance of pure R-113 in any significant way, whereas the CHF decreases with decreasing gap size. In addition, while the presence of oil was observed to have only a relatively minor effect on low flux nucleate boiling, it caused a serious degradation of the high flux boiling performance. This deterioration increased with increasing oil concentration and was more severe for smaller gap sizes. However, for a given gap size, the CHF increased with increasing oil concentration accompanied by increasingly larger surface superheats.  相似文献   

3.
毛细微槽内的相变传热的实验研究   总被引:1,自引:0,他引:1  
本文对矩形毛细微槽竖直板的相变传热特性进行了实验研究。结果表明毛细微槽对相变换热具有很大的促进作用。当壁面过热度较小时,相变换热形式主要是三相接触线附近的蒸发换热机制。而当过热度较大时,微槽内发生剧烈的沸腾。微槽内相变换热的临界热负荷有两种产生机理:其一是当微槽长度较大时微槽内由于流动阻力而产生的液体输运临界;另一机理是当微槽长度较小时的池内沸腾临界现象,亦即由动态微液层模型决定的临界机理。实验还得到了微槽强化传热的最佳优化尺寸。  相似文献   

4.
The influence of nucleation on the flow boiling heat transfer coefficient of R-134a/R-290/R-600a refrigerant mixture is experimentally studied in a smooth horizontal tube of 12.7 mm diameter. The heat transfer coefficients are experimentally measured for stratified flow patterns under a varied heat flux condition; a condition found in the evaporator of refrigerators and deep freezers. The experiments are conducted in a counter-current heat exchanger test section. By regulating the flow rate and inlet temperature of acetone, which is the heating fluid flowing in the outer tube, a varied heat flux is provided to the refrigerant flowing in the inner tube. The refrigerant mass flow rate is fixed between 3 and 5 g s−1 and its inlet temperature between −8.59 and 5.33°C, which corresponds to a pressure of 3.2 to 5 bar. The significance of nucleate boiling prevailing in the above-mentioned evaporators is highlighted. The experimental heat transfer coefficients are also compared with well known heat transfer correlations.  相似文献   

5.
肖波齐 《中国物理 B》2013,22(1):14402-014402
Analytical expressions for nucleate pool boiling heat transfer of nanofluid in the critical heat flux (CHF) region are derived taking into account the effect of nanoparticles moving in liquid based on the fractal geometry theory. The proposed fractal model for the CHF of nanofluid is explicitly related to the average diameter of the nanoparticles, the volumetric nanoparticle concentration, the thermal conductivity of nanoparticles, the fractal dimension of nanoparticles, the fractal dimension of active cavities on the heated surfaces, the temperature, and the properties of the fluid. It is found that the CHF of nanofluid decreases with the increase of the average diameter of nanoparticles. Each parameter of the proposed formulas on CHF has a clear physical meaning. The model predictions are compared with the existing experimental data, and a good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. The proposed fractal model can reveal the mechanism of heat transfer in nanofluid.  相似文献   

6.
大空间和毛细管内液氮池沸腾传热的实验研究   总被引:1,自引:1,他引:0  
文中以直径50μm,长20mm的磷青铜丝作为加热丝和测温元件,采用控制热流密度的方式测量了0°,30°,60°和90°倾角下大空间和玻璃毛细管内液氮的沸腾曲线,分析了毛细管对核态沸腾传热的影响以及管径和倾角对临界热流密度的综合影响。结果表明,在实验管径内,毛细管对于核态沸腾传热有明显的强化作用;并存在一最佳管径,可在30°~90°倾角范围内获得最大的CHF值,并且其值高于大空间时的CHF。  相似文献   

7.
This paper is concerned about pool boiling heat transfer using nanofluids, a subject of several investigations over the past few years. The work is motivated by the controversial results reported in the literature and the potential impact of nanofluids on heat transfer intensification. Systematic experiments are carried out to formulate stable aqueous based nanofluids containing γ-alumina nanoparticles (primary particle size 10–50 nm), and to investigate their heat transfer behaviour under nucleate pool boiling conditions. The results show that alumina nanofluids can significantly enhance boiling heat transfer. The enhancement increases with increasing particle concentration and reaches ∼ ∼40% at a particle loading of 1.25% by weight. Discussion of the results suggests that the reported controversies in the thermal performance of nanofluids under the nucleate pool boiling conditions be associated with the properties and behaviour of the nanofluids and boiling surface, as well as their interactions.  相似文献   

8.
This paper is concerned about pool boiling heat transfer using nanofluids, a subject of several investigations over the past few years. The work is motivated by the controversial results reported in the literature and the potential impact of nanofluids on heat transfer intensification. Systematic experiments are carried out to formulate stable aqueous based nanofluids containing γ-alumina nanoparticles (primary particle size 10–50 nm), and to investigate their heat transfer behaviour under nucleate pool boiling conditions. The results show that alumina nanofluids can significantly enhance boiling heat transfer. The enhancement increases with increasing particle concentration and reaches ∼ ∼40% at a particle loading of 1.25% by weight. Discussion of the results suggests that the reported controversies in the thermal performance of nanofluids under the nucleate pool boiling conditions be associated with the properties and behaviour of the nanofluids and boiling surface, as well as their interactions.This revised version was published online in August 2005 with a corrected issue number.  相似文献   

9.
L. Zhang  M. Gong  J. Wu  L. Xu 《实验传热》2013,26(3):251-260
The nucleate pool boiling heat transfer data on a smooth flat surface were measured for three binary mixtures of HC600a/HFC134a, HC600a/HC290, and HC600a/HFC23. Much effort was made to investigate the influence of the boiling range on the pool-boiling heat transfer performance. From the experimental results, the HC600a/HFC23 mixture with a wide boiling range showed lower heat transfer coefficients (HTCs) than the mixture with a narrow boiling range such as HC600a/HFC134a and HC600a/HC290 systems. The measured data were also compared with the results predicted by five well-known correlations. It can be found that the average deviation is less than 25% for mixtures with narrow boiling ranges, but a larger deviation for mixtures with wide boiling ranges.  相似文献   

10.
实验研究了高油浓度的制冷剂/油混合物在泡沫金属加热表面池沸腾换热特性。使用三种泡沫铜作为加热表面,其参数分别为10ppi/90%孔隙率、10 ppi/95%孔隙率和30 ppi/98%孔隙率,厚度均为10 mm。制冷剂为R113,润滑油为VG68,油浓度为0%~40%。实验结果表明,泡沫金属总是强化池沸腾换热,换热系数最多提高450%;润滑油恶化制冷剂在泡沫金属加热表面池沸腾换热,换热系数最多降低90%。开发了高油浓度的制冷剂/油混合物在泡沫金属加热表面池沸腾换热关联式,预测值与95%的实验值误差在±30%以内。  相似文献   

11.
EHD强化水平管外沸腾传热的试验研究   总被引:17,自引:1,他引:16  
本研究对水平管外沸腾换热的EHD强化进行了试验,得出了沸腾换热系数与外加电场的电压、管壁热流密度等相关参数的关系,并对试验现象和外加电场的功耗进行了分析,为探索EHD强化沸腾传热的机理和理论以及它的工程应用提供了一定的依据.  相似文献   

12.
Experimental results concerning pool film boiling on a wire under the action of an externally imposed electric field are reported. The working fluid was saturated R113 at atmospheric pressure, the heaters were platinum wires of 0.2, 0.3, and 0.6 mm diameter. An electrostatic field of cylindrical geometry was created around the wire by means of a 60-mm-diameter cylindrical cage in order to assess electrohydrodynamic (EHD) effects on boiling. Voltages up to 15 kV d.c. were applied. The results showed that two different film boiling regimes, separated by an additional boiling crisis, can exist in the presence of an electric field. The first regime, at low wire superheat, is strongly influenced by the electric field, showing a remarkable heat transfer enhancement with increasing voltage. The second one, at higher superheat, is weakly dependent on the field strength and almost coincident with the zero field one. The two film boiling regimes are separated by a transition characterized by a hysteresis cycle, similar to the one between nucleate boiling and first film boiling regime.  相似文献   

13.
Pool boiling heat transfer using nanofluids (which are suspensions of nano-sized particles in a base fluid) has been a subject of many investigations and incoherent results have been reported in literature regarding the same. In the past, experiments were conducted in nucleate pool boiling with varying parameters such as particle size, concentration, surface roughness etc. and all sort of results ranging from heat transfer enhancement, deterioration and no effect were reported. This work tries to segregate a survey on pool boiling of nanofluids with respect to particle concentration. This is due to the fact that a major drift in heat transfer behavior is observed at higher and lower particle concentration. But upon deep perusal it has been found that deterioration in heat transfer coefficient are mainly observed at higher particle concentrations (4–16% by weight) and enhancements mainly at lower particle concentrations (0.32–1.25% by weight). Moreover, the relative size of the particle with respect to the surface roughness of the heating surface seems to play an important role in understanding the boiling behaviour. Also, recent works have reported that change in ‘surface wetting’ of the heating surface due to nanofluids and the formation of a porous layer modifiying nucleation site density can be of importance in predicting nucleate pool boiling characteristics of nanofluids. In the present paper, attempts are made to make systematic analysis of results in literature and try to bring out a common understanding of the results in literature.  相似文献   

14.
This study presents new data on nucleate boiling heat transfer obtained in compact horizontal tube bundles with small tube gaps. The experiment investigates the heat transfer enhancement effects by the restricted spaces comprising the compact tube bundles and the enhanced heat transfer tubes for nucleate boiling heat transfer of R-11 at atmospheric pressure. A roll-worked tube was used as a new type of enhanced heat transfer tube. The experimental results show that the small tube gaps can greatly enhance boiling heat transfer in a smooth tube bundle, while enhancement effects of small gaps were not quite significant for the enhanced tube bundle. There is a compound effect from the enhanced surface and the restricted space only for the enhanced tube bundle with the tube gap of 0.5 mm. The effects of the tube positions within both compact tube bundles on the boiling heat transfer were minor.  相似文献   

15.
FC-72在浸泡于液池中的微小圆管内的沸腾传热   总被引:3,自引:0,他引:3  
本文对浸泡于FC-72液池中的两个微小圆管进行了沸腾实验研究,得到了沸腾曲线和传热系数,并用DV摄像机拍摄到了圆管出口处的沸腾状况,研究了管道尺寸对沸腾传热特性的影响。实验结果显示,管道尺寸对沸腾传热特性有显著的影响。传热系数和CHF随着管道尺寸的缩小而减小.直径为1.10mm的圆管出口处在低热负荷加热时发生了汽泡阻塞,并导致了剧烈的沸腾滞后现象。  相似文献   

16.
Pool boiling characteristics on horizontal tubes with diameter lying between wires and industrial tubes have been investigated experimentally. Boiling experiments are carried out at near atmospheric pressures with water and R-123 as boiling liquids. The experimental results show quite a different boiling behavior compared to larger tubes or plates. The commonly used correlations are found to be ineffective over this range of diameters. A developing sliding bubble mechanism can be attributed to such behavior which shows a strong diameter effect. The heat transfer is found to increase with diameter which is contrary to that on industrial size tubes. Useful boiling data are presented in this range of diameters in which experimental data are scarce. The need for more investigations is stressed in view of emerging applications in this area.  相似文献   

17.
采用EHD强化技术对R11/R134a混合工质进行管束外沸腾传热的试验研究,以试验所获得的大量数据为基础,分析了电场电压、热流密度与换热系数、强化系数之间的关系,并重点分析了不同工质组分对EHD强化效果的影响,为探索EHD强化沸腾换热的机理以及将其推广到工程应用提供了一定依据。  相似文献   

18.
The characteristics of boiling and critical heat flux (CHF) behavior of nano-fluids with alumina and silver nano-particles suspended in de-ionized water (pure water) were studied with circular plate heaters in the present study. Enhancements of CHF in nano-fluids in the wide range of particle sizes and concentrations were compared with those in pure water. Also, the effects of the particle deposition on CHF enhancement were investigated. All experiments were performed at the atmospheric pressure condition. The results show that the measured boiling curves in nano-fluids were shifted to the right and CHF were significantly enhanced for different nano-particle sizes and concentrations. The CHF of nano-fluids was increased as the size of the nano-particles decreased. On the other hand, nano-particle concentration value showing the maximum CHF had a critical value. In each pool boiling experiment of nano-fluids, nano-particles were deposited on the heater surface. Assuming that this phenomenon caused the CHF enhancement, pool boiling experiments of pure water were carried out with these nano-particle deposited heaters. The results of these tests were similar to those of the test of the nano-fluids for the CHF enhancement. The main cause of CHF enhancement was found to be the change of the heater surface structure. In order to analyze boiling phenomena of pure water and Al2O3 nano-fluids, boiling process was visualized by using a high speed camera.  相似文献   

19.
李祥东  汪荣顺  石玉美 《低温与超导》2006,34(3):168-171,175
对核态沸腾表面上的各种传热机理进行了分析和量化,建立了低温液体核态流动沸腾传热的机理模型,并将该模型纳入双流体模型实现了数值求解,数值预测的结果详细地反映出了壁面上各参数随流动的变化情况。该机理模型的计算结果表明,气泡挣脱后液体与过热壁面间的激冷效应是导致壁面上各参数在OSV处突变的根本原因。  相似文献   

20.
This paper deals with experimental results on flowboiling heat transfer of liquid moving in an annular channel with unilateral central heating under the conditions of a significant effect of capillary forces on the flow modes and heat transfer. Experiments were carried out on boiling freon R318C in an annular channel with a gap of 0.95 mm and transparent outer wall. The inner wall was heated by the electric current. The local heat transfer coefficients and flow modes are presented. The critical film thickness corresponding to suppression of nucleate boiling was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号