首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under electron impact cycloheptanol decomposes by four fragmentation paths: (1) α-cleavage with subsequent losses of C1-C5 fragments, (2) elimination of water, (3) loss of the hydrogen atom from C-1 and (4) loss of the hydroxyl group. The mechanism of water elimination was investigated by means of deuterium labelling. 1,4-Elimination of water predominates in cycloheptanol, with the stereospecific cis-1,3-elimination also being operative. The loss of water is preceded by extensive exchange of the hydroxyl hydrogen with those of the ring. This is attributed to a very facile transannular interaction of the hydroxyl group with the C-3 to C-6 positions that are made accessible due to conformational properties of the 7-membered ring. A kinetic model is proposed, describing migrations of the ring hydrogen atoms.  相似文献   

2.
The major dissociation pathways of the [M-H]+ (loss of NH3 or CH4) and the [M+H]+ (loss of NH3 or CH3) ions from dimethylpyrroles have been determined to occur from isomeric parent ions. For the [M-H]+ ion (formed by loss of a methyl hydrogen), loss of NH3 leads to the formation of the phenylium ion and is preceded by consecutive carbon ring expansions followed by a ring contraction to form protonated aniline. Loss of CH4 occurs after the first carbon ring expansion, which forms protonated picoline. The relative partitioning between the two dissociation paths depends upon the internal energy content of the parent ion; the highest point on the potential energy surface is the second ring expansion step. The [M+H]+ ion reacts through a similar pathway via dihydro analogs of picoline and aniline. The proposed reaction pathways are supported by results of semiempirical molecular orbital calculations.  相似文献   

3.
Extensive 13C and 15N labelling has shown that the molecular ions of 2-, 3- and 4-cyanopyridine with lifetimes up to 10?6 s eliminate hydrogen cyanide originating predominantly from the ring (?65%). Moreover, this hydrogen cyanide loss occurs after an equilibrated positional interchange of the ring carbon atoms at positions interchange of the ring carbon atoms at positions 2, 4 and 6 via Dewar pyridine structures. In molecular ions with lifetimes of 10?6–10?5 s skeletal rearrangements have taken place in such a way that both nitrogen atoms have become equivalent prior to the loss of hydrogen cyanide. Arguments are put forward that this equivalence of nitrogen atoms is caused by the intermediacy of ions with a 1,4-dicyanobuta-1,3-diene structure. About 60% of these intermediate ions eliminate hydrogen cyanide in a fast process. The remaining 40% of these ions undergo ring closure again to a pyridine ring in which the carbon atoms of positions 2, 4 and 6 are positionally interchanged rapidly via Dewar pyridine structures followed by ring opening again and eventual loss of hydrogen cyanide. This interpretation of the 13C and 15N labelling results is further corroborated by a study of the loss of hydrogen cyanide from molecular ions of 1,4-dicyanobuta-1,3-diene labelled with 13C in both cyano groups.  相似文献   

4.
The mechanism of water elimination from metastable molecular, [M ? CH3˙]+ and [M ? ring D]+˙ ions of epimeric 3-hydroxy steroids of the 5α-series has been elucidated. Deuterium labelling, the measurement of the translational energy released during the loss of water, and collision-induced decomposition mass-analysed kinetic energy spectrometry were the techniques used. It was found that the mechanisms of water loss from metastable M+˙ and [M ? ring D]+˙ ions is different from that from [M ? CH3˙]+ ions.  相似文献   

5.
The fragmentations of the acylium ions O?C+? CH2? CH2? CO2CH3 and O?C+? CH2? CH2? COCH3 generated from methyl levulinate are governed extensively by the interaction of the two carbonyl groups. Both species eliminate a molecule of CO unimolecularly and under CID conditions. The results derived from measurements of 13C and 18O labelled precursors, together with kinetic energy release values, have been used to study the mechanisms. In the first of these acylium ions, both carbonyl groups are equivalent; this phenomenon can be the result of a 1,4 methoxy shift. In the second acylium ion, only the oxygen atoms change their positions; this isomerization occurs via the [M? H]+ of γ-valerolactone. Some other fragmentation processes also discussed in relation to 2H labelling are the formation of the [M ? COOCH3] + ion and the loss of HCOOCH3 in the collision-induced dissociation mass spectra of the first acylium ion, and the formation of the [CH3CO]+ ion and the loss of H2O for the second one.  相似文献   

6.
Mass spectra of 1-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain, suggest that the [M? CH3]+ ion is represented partly by an α-hydroxybenzyl fragment. Moreover, the molecular ion loses successively—after scrambling of all hydrogen atoms, except those of CH3? a hydrogen atom and C6H6, generation the CH3CO+ ion. Diffuse peaks, found in the spectra of of 2-phenylethanol-1 and its analogues, specifically deuterated in the aliphatic chain and in the phenyl ring, show that the molecular ion loses C2H4O, possibly via a four-center mechanism, after an exchange of aromatic and hydroxylic hydrogens. Mass spectra of 1-phenylpropanol-2 and its analogues, specifically, deuterated in the aliphatic chain, demonstrate that in the molecular ion exclusively the hydroxyl hydrogen atom is transferred to one of the ortho-positions of the phenyl ring via a McLafferty rearrangement, generating the [M ? C2H4O]+ ion. Furtherore, an eight-membered ring structure is proposed for the [M ? CH3]+ ion to explain the loss of H2O and C2H2O from this ion after an extensive scrambling of hydrogen atoms.  相似文献   

7.
Metastable molecular ions of phenyl styryl sulfides may decompose by loss of CH3˙, SH˙, CHS˙, C6H5˙, C6H6 or C7H7˙. Labelling with carbon-13 and deuterium gave information about the mechanisms of these reactions. It appears that extensive rearrangements occur prior to most of these fragmentations. In the case of phenyl β-styryl sulfide both phenyl groups and both vinyl carbon atoms are found in the C7H7 fragment in comparable amounts. For phenyl α-styryl sulfide this fragmentation leads more specifically to the loss of the S-phenyl group and the β-vinyl carbon atom. It was concluded that rearrangements occur, partly via symmetric diphenyl ethene sulfide structures, to benzyl phenyl thione ions, from which the fragmentation occurs. For the loss of CHS˙ an earlier proposed mechanism was confirmed. From both compounds the S-phenyl ring can be lost as C6H5˙ or C6H6 as well as the C-phenyl ring. Fragmentation occurs from one of the initial structures as well as from benzyl phenyl thione. Loss of CH3˙ is thought to occur after ring closure with formation of dihydrobenzo[b]thiophenes followed by ring opening by rupture of a C? S bond. While phenyl β-styryl sulfide shows a strong tendency towards isomerization to a symmetric structure like 1,2-diphenylethene sulfide, phenyl α-styryl sulfide easily rearranges in an electrocyclic reaction with formation of benzyl phenyl thione.  相似文献   

8.
Metastable (3-phenyl-2-propynyl)benzenium ions, generated by electron impact induced fragmentation from the appropriately substituted 1,4-dihydrobenzoic acid, react by loss of ˙CH3 and C6H6. The study of deuterated derivatives reveals that hydrogen/deuterium exchanges involving all hydrogen and deuterium atoms precede the fragmentations. The results suggest a skeletal rearrangement by electrophilic ring-closure reactions giving rise to protonated phenylindene and protonated 9,10-methano-9,10-dihydroanthracene prior to the elimination of C6H6 and ˙CH3, respectively. A study of isomeric [C15H13]+ ions by collision-induced decomposition and by deuterium labelling shows that these ions interconvert by hydrogen migrations and skeletal rearrangements.  相似文献   

9.
5β-androstan-3-ones carrying a 6α-OH group show in their mass spectra a key-ion indicating the loss of water and C-1 to C-4 as C4H5O? particle. 6β-OH isomers lose instead C-1 to C-4 in form of C4H7O?.In 6α-hydroxy-androstan-3-ones differentiation between the connection of the A/B-ring system is possible, because in 5α-isomers the loss of C-3 to C-7 occurs as a C5H6O2 particle, while the 5β-isomers lose the same C atoms as a C5H7O? unit.Compounds with a 6β-OH group in an A/B trans connected ring system show a tendency for thermal water elimination. After rearrangement of the double bond in 4,5 position the typical fragments for 3-keto-Δ4-steroids are obtained.Occasionally a strong influence of a 6-OH group on fragmentation reactions in the D-ring system is observed: The presence of a 6α-OH group in an androstan-3,17-dione enhances the loss of C-16 and C-17 in the form of acetaldehydenol. Also the connection of the A/B-ring system may have a considerable influence on this type of reaction: In 6,17β-dihydroxy-androstan-3-ones only by trans connection of the A/B-ring system, C-16 and C-17 are lost with high probability after water elimination.  相似文献   

10.
Mild gas-phase acids C4H9+ and NH4+ protonate pyrrole at C-2 and C-3 but not at the nitrogen atom, as determined by deuterium labeling and neutralization–reionization mass spectrometry. Proton affinities in pyrrole are calculated by MP2/6–311G(2d, p) as 866, 845 and 786 kJ mol-1 for protonation at C-2, C-3 and N, respectively. Vertical neutralization of protonated pyrrole generates bound radicals that in part dissociate by loss of hydrogen atoms. Unimolecular loss of hydrogen atom from C-2-and C-3-protonated pyrrole cations is preceded by proton migration in the ring. Protonation of gaseous imidazole is predicted to occur exclusively at the N-3 imine nitrogen to yield a stable aromatic cation. Proton affinities in imidazole are calculated as 941, 804, 791, 791 and 724 for the N-3, C-4, C-2, C-5 and N-1 positions, respectively. Radicals derived from protonated imidazole are only weakly bound. Vertical neutralization of N-3-protonated imidazole is accompanied by large Franck–Condon effects which deposit on average 183 kJ mol-1 vibrational energy in the radicals formed. The radicals dissociate unimolecularly by loss of hydrogen atom, which involves both direct N-H bond cleavage and isomerization to the more stable C-2 H-isomer. Potential energy barriers to isomerizations and dissociations in protonated pyrrole and imidazole isomers and their radicals were investigated by ab initio calculations.  相似文献   

11.
The mechanism of water elimination from metastable molecular and [M ? CH3˙]+ ions, as well as from ions deprived of ring D, in epimeric 3-hydroxy steroids of the 5β-series has been elucidated by deuterium labelling, by the measurements of the translational energy released during loss of water, and by collision-induced decomposition mass-analysed ion kinetic energy spectrometry. It was found that the dehydration of the metastable molecular ion in 3α-hydroxy steroids of the 5β-series occurs mostly regiospecifically as an elimination of the 3α-hydroxyl together with the 9α-hydrogen atom. The ring A in the molecular ion has to flip to the boat conformation to make this reaction possible. In the metastable molecular ion of 3β-hydroxy steroids of the 5β-series a different dehydration mechanism operates, with very little participation of the 9α-hydrogen atom. The mechanisms of water loss from metastable [M ? CH3˙]+ ions and from ions deprived of ring D differ from that of the molecular ion.  相似文献   

12.
The mass spectrum of desmethylencecalin has been measured and a fragmentation mechanism for the loss of a water molecule from the [M? CH3]+ ion is proposed on the basis of isotope labelling and metastable peak observations. The eliminated water has been shown to involve the carbonyl oxygen and hydrogen atoms of the hydroxyl and acetyl groups.  相似文献   

13.
The structure and formation of [C8H8O]+. ions generated from phenylcyclopropylcarbinol and 1-phenyl-1-hydroxymethylcyclopropane upon electron impact, have been studied using kinetic energy release measurements, by determination of ionization and appearance energies and by collisional activation. It is shown that the non-decomposing [C8H8O] ions have exclusively the structure of the enol ion of phenylacetaldehyde, although it is less stable than the enol ion of acetophenone by about 45 kJ mol?1. This has been interpreted as an indication that the [C8H8O] ions from phenylcyclopropylcarbinol are formed by an attack of either the phenyl ring or the hydroxyl group upon the C-1? C-2 (or C-1? C-3) bond of the cyclopropane ring under a simultaneous expulsion of ethene and migration of the attacking group to the C-1 position. The [C8H8O] ion from 1-phenyl-1-(hydroxymethyl)cyclopropane is formed by opening of the cyclopropane ring via a benzylic cleavage. A kinetically controlled hydrogen shift in the resulting ring opened ion prior to or during ethene loss then leads to the formation of [C8H8O] ions which have the structure of the enol ion of phenylacetaldehyde.  相似文献   

14.
Alkaloids from plants of the genus Erythrina display important biological activities, including anxiolytic action. Characterization of these alkaloids by mass spectrometry (MS) has contributed to the construction of a spectral library, has improved understanding of their structures and has supported the proposal of fragmentation mechanisms in light of density functional calculations. In this study, we have used low‐resolution and high‐resolution MSn analyses to investigate the fragmentation patterns of erythrinian alkaloids; we have employed the B3LYP/6‐31+G(d,p) model to obtain their reactive sites. To suggest the fragmentation mechanism of these alkaloids, we have studied their protonation sites by density functional calculation, and we have obtained their molecular electrostatic potential map and their gas‐phase basicity values. These analyses have indicated the most basic sites on the basis of the proton affinities of the nitrogen and oxygen atoms. The protonated molecules were generated by two major fragmentations, namely, neutral loss of CH3OH followed by elimination of H2O. High‐resolution analysis confirmed elimination of NH3 by comparison with the losses of H2 and •CH3. NH3 was eliminated from compounds that did not bear a substituent on ring C. The benzylic carbocation initiated the dissociation mechanism, and the first reaction involved charge transfer from a lone pair of electrons in the oxygen atoms. The second reaction consisted of ring contraction with loss of a CO molecule. The presence of hydroxy and epoxy groups could change the intensity or the occurrence of the fragmentation pathways. Given that erythrinian alkaloids are applied in therapeutics and are promising leads for the development of new drugs, the present results could aid identification of several analogues of these alkaloids in biological samples and advance pharmacokinetic studies of new plant derivatives based on MSn and MS/MS analyses. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Pyrolysis of syn-2-adamantyl-4-d1 methane-sulphonate 8 in a silanised pyrex reactor leads to protoadamantene with about 0.25 atoms 2H at each of C-2, -7 and -9 and little labelling elsewhere according to 2H and 13C NMR. This indicates complete epimerisation of 8 before elimination. In the concurrently formed dehydroadamantane, unequal partitioning of label between positions C-6/8, -9 and -10 suggests only limited epimerisation before elimination. Pyrolysis of the 4,4-dideuteriated sulphonate 11, gave analogous results. The syntheses of 8 and 11 are described and the relevance of the analytical results to possible mechanisms is considered.  相似文献   

16.
The study of the loss of HCN from the molecular ions of [2-13C]indole and [3-13C]indole shows that, to a good approximation, only the two carbon atoms of the pentagonal ring are involved in this fragmentation process, contrary to the behaviour of the H atoms; the C-2 atom is eliminated predominantly, chiefly in the ion source (85–90%) and a little less in the metastable energy range (75–80%). The losses of 13CCH3˙ and C2H3˙ from the [M? H12CN] ions of the two compounds suggest the occurrence of different structures, providing evidence for several mechanisms of HCN elimination.  相似文献   

17.
The sources of the migrant hydrogen atom(s) in reactions (a) and (b) in the electron impact mass spectrum of n-propyl benzoate have been investigated: (a) [C6H5CO2C3H7]+ →[C6H5CO2H]+ + C3H6; (b) [C6H5CO2C3H7]+ → [C6H5CO2H2]+ + C3H5sdot;. Deuterium labelling of the propyl group showed that, for reaction (a) at 70 eV ionizing energy 3 ± 1% of the hydrogen originates from C-1 of the propyl group, 86 ± 4% from C-2 and 11 ± 3% from C-3. The specificity of the transfer from C-2 increases as the internal energy of the fragmenting ions decreases, indicating that the results cannot be rationalized in terms of H/D interchanges between positions in the propyl group, but rather that the reaction involves specific, competing, H transfer reactions from each propyl position, in contrast to the high site specificity characteristic of the McLafferty rearrangement. Reaction (b) involves, almost exclusively, transfer of one hydrogen from C-2 and one from C-3 with only very minor participation of C-1 hydrogens. The [C6H5COOH]+ ion produced in reaction (a) fragments further to [C6H5CO]+ + OH. and the labelling results indicate some interchange of the carboxylic hydrogen with (ortho) ring hydrogens for those ions fragmenting in the first drift region. The extent of interchange is less than that observed for fragmentation of the same ion produced by direct ionization of benzoic acid or by reaction (a) in ethyl benzoate.  相似文献   

18.
The mechanisms for loss of HCNO, OH˙ and the substituent X˙ from aromatic aldosimes were elucidated with the aid of deuterium labelling, metastable ion characteristics and substituent effects. It is proposed that the loss of HCNO occurs through a cyclohexadiene type intermediate ion generated via a 6-membered ring hydroxyl hydrogen transer to the ortho position of the phenyl ring. This is followd by a second step which involves the trnsfer of a hydrogen atom from the ortho position to C-1. It is inferred from the corelation with the mesomeric effect (σR+) of substituents that this step is rate determining. Loss of OH˙ and X˙ proceed via the same cyclohexadiene type intermediate ion but, depending upon the substituent, other pathways are also followed.  相似文献   

19.
From a comparison of the metastable ion bundance ratios for loss of C2H4 and H2S from [C3H7S]+ ions in a series of alkyl thio ethers and thiols it was concluded that in most compunds these ion s isomerize to a common structure prior to decomposition in the first field free region. The mechanism for C2H4 loss from the [C3H7S]+ ion gen erated from CH3SCH2CH3 was investigated in detail using 13C and 2H labelling. A rearrangement with formation of a cyclic intermediate prior to the decompistion reaction is proposed. The fragmentation is preceded by extensive hydrogen scrabling. The carbon atoms of the expelled C2H4 molecule are those of the CH2?CH3 moiety.  相似文献   

20.
Hydrazino-crown ethers have been synthesized in only 3 or 4 steps starting from 1,2-diacetylhydrazine. The X-ray crystal structure of protonated hydrazino-19-crown-7 (2) showed that one of the hydrazino nitrogen atoms was directed outside the ring cavity. A solvent methanol molecule is held in the cavity of the host ligand by three hydrogen bonds involving two hydrogen atoms bonded to nitrogens of the ligand and the alcohol hydrogen of the methanol. The logK values for the interaction of2 with CH3NH + 3 , Ag+, Pb2+, and Cd2+ were much less than those for the interaction of symmetrical triaza-l8-crown-6 (5) with the same cations. Hydrazino-crown2 reduced silver ions to silver metal when a solution of2 and silver ions in DMSO was allowed to stand for several days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号