首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecule-based magnetic materials are promising candidates for molecular spin qubits, which utilize spin relaxation behavior. Various kinds of transition metal complexes with S=1/2 have been reported to act as spin qubits with long spin-spin relaxation times (T2). However, the spin qubit properties of low-spin Ni(III) complexes are not as well known since Ni(III) compounds are often unstable. We report here the slow magnetic relaxation behavior and T2 values for three kinds of low-spin Ni(III) based complexes with S=1/2 under magnetically diluted conditions. [Ni(cyclam)X2]Y (cyclam=1,4,8,11-tetraazacyclotetradecane) with octahedral structures and [Ni(mnt)2] (mnt=maleonitriledithiolate) with a square-planar structure underwent slow magnetic relaxations in the presence of a dc magnetic bias field. From electron spin resonance (ESR) spectroscopy, the Ni(III) complexes exhibited observable T2, indicating that Ni(III) complexes are promising candidates for use as molecule-based spin qubits.  相似文献   

2.
Understanding the electron spin relaxation properties of paramagnetic species is a fundamental requirement to use them as a probe to measure distances between sites in biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Even though Ni(II) ion is an essential trace element for many species, relaxation properties are not well understood. Herein, the polycrystalline sample of Ni(II) ion magnetically diluted in Zn(Pyrazole)6(NO3)2 (Ni/ZPN) has been studied in detail by EPR spectroscopy to explore the electron spin relaxation time. Progressive continuous-wave (CW) EPR power saturation study on Ni/ZPN at 300 K yielded 907 mW as the P1/2 value. The cavity constant (KQ) has been calculated using tempol in PVA-BA glass matrix and the product of electron spin-lattice relaxation time (T1) and spin–spin relaxation time (T2) for Ni/ZPN at 300 K has been reported for the first time.  相似文献   

3.
The rotational mobility of anionic spin probes in water-containing nylon 6 film was investigated by means of electron spin resonance (ESR) measurements for comparison with the results for nonionic spin probes reported previously. The extrema separation of the ESR spectra, 2Az′ increased with time owing to the evaporation of water. In the higher temperature region, 2Az′ increased steeply with time at first, and then more slowly, whereas for the nonionic spin probes, 2Az′ increased gradually and monotonically with time. This fact suggests that the anionic probe molecules are more strongly affected by water than the nonionic ones, i.e., the former probes are located in hydrophilic regions and the latter in hydrophobic regions. T50G, which can be empirically correlated with the glass transition temperature of the polymer Tg decreased with increasing water content. The decreasing tendency for the anionic spin probes was stronger than that for the nonionic ones. This fact also indicates that the local environment around the probe molecules varies from probe to probe. The rotational correlation time τR decreased markedly with an increase in water content. The Arrhenius plots of τR showed two crossover points. The crossover points in the higher temperature region Tn decreased greatly with increasing water content. The difference in Tn between dried and water-containing films was larger than that for T50G. The activation energy for rotation, E, also decreased with increasing water content. It is suggested that water concentrates around the anionic spin probes and makes their rotation much easier.  相似文献   

4.
Nuclear spin–lattice (T1) and spin–spin (T2) relaxation times provide versatile information about the dynamics and structure of substances, such as proteins, polymers, porous media, and so forth. Multidimensional experiments increase the information content and resolution of NMR relaxometry, but they also multiply the measurement time. To overcome this issue, we present an efficient strategy for a single‐scan measurement of a 2D T1T2 correlation map. The method shortens the experimental time by one to three orders of magnitude as compared to the conventional method, offering an unprecedented opportunity to study molecular processes in real‐time. We demonstrate that, despite the tremendous speed‐up, the T1T2 correlation maps determined by the single‐scan method are in good agreement with the maps measured by the conventional method. The concept of the single‐scan T1T2 correlation experiment is applicable to a broad range of other multidimensional relaxation and diffusion experiments.  相似文献   

5.
The reaction of Fe(NCS)3 prepared in situ in MeOH with 5‐X‐SalEen ligands (5‐X‐SalEen=condensation product of 5‐substituted salicylaldehyde and N‐ethylethylenediamine) provided three Fe(III) complexes, [Fe(5‐X‐SalEen)2]NCS; X=Me ( 1 ), X=Br ( 2 ), X=OMe ( 3 ). All the complexes reveal similar structural features but a very different magnetic profile. Complex 1 shows a gradual spin crossover while complexes 2 and 3 show a sharp spin transition. The T1/2 for complex 2 is 237 K while for complex 3 it is much higher with a value of 361 K. The spin transition temperature is shifted towards higher temperature with increasing electron‐donation ability of the ligand substituents. This experimental observation has been rationalized with DFT calculations. UV‐Vis and cyclic voltammetry studies support the fact that the electron density on the ligand increases from Me to Br to OMe substituents. To understand the change in spin states, temperature‐dependent EPR spectra have been recorded. The spin state equilibrium in the liquid state has been probed with Evans NMR spectroscopic method, and thermodynamic parameters have been evaluated for all complexes.  相似文献   

6.
Pulsed double electron–electron resonance (DEER) provides pairwise P(r) distance distributions in doubly spin labeled proteins. We report that in protonated proteins, P(r) is dependent on the length of the second echo period T owing to local environmental effects on the spin‐label phase memory relaxation time Tm. For the protein ABD, this effect results in a 1.4 Å increase in the P(r) maximum from T=6 to 20 μs. Protein A has a bimodal P(r) distribution, and the relative height of the shorter distance peak at T=10 μs, the shortest value required to obtain a reliable P(r), is reduced by 40 % relative to that found by extrapolation to T=0. Our results indicate that data at a series of T values are essential for quantitative interpretation of DEER to determine the extent of the T dependence and to extrapolate the results to T=0. Complete deuteration (99 %) of the protein was accompanied by a significant increase in Tm and effectively abolished the P(r) dependence on T.  相似文献   

7.
A thermochromic 1D spin crossover coordination (SCO) polymer [Fe(βAlatrz)3](BF4)2 ? 2 H2O ( 1? 2 H2O), whose precursor βAlatrz, (1,2,4‐triazol‐4‐yl‐propionate) has been tailored from a β‐amino acid ester is investigated in detail by a set of superconducting quantum interference device (SQUID), 57Fe Mössbauer, differential scanning calorimetry, infrared, and Raman measurements. An hysteretic abrupt two‐step spin crossover (T1/2=230 K and T1/2=235 K, and T1/2=172 K and T1/2=188 K, respectively) is registered for the first time for a 1,2,4‐triazole‐based FeII 1D coordination polymer. The two‐step SCO configuration is observed in a 1:2 ratio of low‐spin/high‐spin in the intermediate phase for a 1D chain. The origin of the stepwise transition was attributed to a distribution of chains of different lengths in 1? 2 H2O after First Order Reversal Curves (FORC) analyses. A detailed DFT analysis allowed us to propose the normal mode assignment of the Raman peaks in the low‐spin and high‐spin states of 1? 2 H2O. Vibrational spectra of 1? 2 H2O reveal that the BF4? anions and water molecules play no significant role on the vibrational properties of the [Fe(βAlatrz)3]2+ polymeric chains, although non‐coordinated water molecules have a dramatic influence on the emergence of a step in the spin transition curve. The dehydrated material [Fe(βAlatrz)3](BF4)2 ( 1 ) reveals indeed a significantly different magnetic behavior with a one‐step SCO which was also investigated.  相似文献   

8.
An electron spin resonance (ESR) spin probe study was performed on 1 : 1 by weight poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) complex over the 100–450 K temperature range with a series of tetramethylpiperidyloxy‐based spin probes. Measurements of the parameters T5mT, Ta and Td demonstrated the effects of probe size and the strength of hydrogen bonding. The probes in the series Tempone, Tempo, Tempol and Tamine (respectively 4‐oxo‐, unsubstituted, 4‐hydroxy‐ and 4‐amino‐2,2,6,6,‐tetramethylpiperidine ‐1‐oxyl) displayed noticeable increases in the hydrogen‐bonding effect, as indicated by Ta and Td. These increases correlated with increasing hydrogen bond acceptor strength. On the other hand, as the probe size became larger, T5mT gradually increased due to the free volume decrease. These effects were analyzed using the established theoretical relationship of T5mT to probe volume expressed by f. Meanwhile, in order to investigate the effect of polymer matrix rigidity, a similar study was performed with a nitroxide spin probe, 2,2,6,6‐tetramethyl‐1‐piperidine‐1‐oxyl (Tempo), on PAA/PEO complexes of different weight compositions. The quantitative fast motion fraction in the composite ESR spectrum was calculated. The influence of changes in the composition of PAA on the molecular mobility was characterized by changes of the spectral parameters and τc. The molecular mobility was shown to diminish with increasing content of PAA in PAA/PEO blends duo to the restriction of the polymer matrix rigidity increase. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
13C spin–lattice relaxation times (T1's) are reported for C-3 of 2-methylindole (methyl,3-13C2) as a function of the concentration of added 1,3,5-trinitrobenzene at 35°C in 1,2-dichloroethane. The observed decreases in T1, with increasing concentrations of 1,3,5-trinitrobenzene, are interpreted in terms of longer time-averaged correlation times which result from (a) the formation of increasing amounts of electron donor–acceptor complex and (b) increases in viscosity. An equation is derived which makes it possible to obtain estimates of the equilibrium constant for complex formation, and the spin–lattice relaxation time of the complex, from the observed T1's and viscosity measurements. From the data obtained, values of 6.4 × 10?12 and 14.1 × 10?12 s rad?1 were calculated for the effective correlation times (at 35°C and 0.686 centipoise) and 0.21 and 0.28 nm for the effective radii of free and complexed donor respectively.  相似文献   

10.
Three iron(II) complexes, [Fe(TPMA)(BIM)](ClO4)2?0.5H2O ( 1 ), [Fe(TPMA)(XBIM)](ClO4)2 ( 2 ), and [Fe(TPMA)(XBBIM)](ClO4)2 ?0.75CH3OH ( 3 ), were prepared by reactions of FeII perchlorate and the corresponding ligands (TPMA=tris(2‐pyridylmethyl)amine, BIM=2,2′‐biimidazole, XBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐biimidazole, XBBIM=1,1′‐(α,α′‐o‐xylyl)‐2,2′‐bibenzimidazole). The compounds were investigated by a combination of X‐ray crystallography, magnetic and photomagnetic measurements, and Mössbauer and optical absorption spectroscopy. Complex 1 exhibits a gradual spin crossover (SCO) with T1/2=190 K, whereas 2 exhibits an abrupt SCO with approximately 7 K thermal hysteresis (T1/2=196 K on cooling and 203 K on heating). Complex 3 is in the high‐spin state in the 2–300 K range. The difference in the magnetic behavior was traced to differences between the inter‐ and intramolecular interactions in 1 and 2 . The crystal packing of 2 features a hierarchy of intermolecular interactions that result in increased cooperativity and abruptness of the spin transition. In 3 , steric repulsion between H atoms of one of the pyridyl substituents of TPMA and one of the benzene rings of XBBIM results in a strong distortion of the FeII coordination environment, which stabilizes the high‐spin state of the complex. Both 1 and 2 exhibit a photoinduced low‐spin to high‐spin transition (LIESST effect) at 5 K. The difference in the character of intermolecular interactions of 1 and 2 also manifests in the kinetics of the decay of the photoinduced high‐spin state. For 1 , the decay rate constant follows the single‐exponential law, whereas for 2 it is a stretched exponential, reflecting the hierarchical nature of intermolecular contacts. The structural parameters of the photoinduced high‐spin state at 50 K are similar to those determined for the high‐spin state at 295 K. This study shows that N‐alkylation of BIM has a negligible effect on the ligand field strength. Therefore, the combination of TPMA and BIM offers a promising ligand platform for the design of functionalized SCO complexes.  相似文献   

11.
A formula relating the1A1?5T2 spin transition temperature (Tc) in Fe(II) complexes to characteristics of the compounds is derived. With certain assumptions, Tc is determined by the splitting parameter ΔLS of eg- and t2g-orbitals for the low-spin complexes and by the frequency ratio of normal vibrations of the low- and high-spin phases. For the group of compounds possessing spin transitions, the values of ΔLS are found and analyzed. Correlations between Tc and ΔLS are established; the values of the change in the probability of the Mössbauer effect are correlated with those of entropy of spin transition. The correlations are substantiated. It is concluded that for mononuclear Fe(II) complexes possessing sharp spin transitions, Tc may not be significantly higher than for Fe(Phy)2(BF4)2 (Tc=282 K).  相似文献   

12.
The 103Rh-resonance has been investigated at 2.8 MHz in mono- and dinuclear olefin complexes by steady-state NMR.-pulse techniques. For dirhodium complexes with scalar Rh, Rh-coupling, a selective rf-irradiation was applied to improve sensitivity. Within the same measuring time the signal/noise ratio is improved by the factor (T2/T)1/2 by this steady-state method in comparison with the usual free-induction technique. (T1/T2)-ratios, as obtained from the dependence of signal in tensity on the pulse-flip angle are discussed in terms of relaxation mechanisms and chemical exchange phenomena. From (T1/T2)- and (T1 + T2)-experiments, individual T1 and T2 values have been determined for C5H5RhC8H12 and Rh(acac)3. The 103Rh-chemical shifts of 39 olefin complexes are reported. Shielding depends upon the (formal) oxidation state of Rh whereby resonances of pure olefin complexes appear at the low-frequency end of the δ-scale, which extends over 10000 ppm. For cyclic 1,3-diene ligands Rh-shielding increases with decreasing ring size and decreases with further conjugation of the diene systems. In the dirhodium complexes, Rh, Rh spin-coupling constants are < 10 Hz. Rh, C-coupling constants in (diene)RhCp-complexes increase, for the terminal diene C-at om, with increasing ring size of the 1,3-diene, 1J(Rh, C) = 11.7 to 17.4 Hz.  相似文献   

13.
We report the results of a combined study of the local structure and the reorientation dynamics in a series of five amorphous polymers of different fragility: cis-trans-1,4-poly(butadiene) (c-t-1,4-PBD), cis-1,4-poly(isoprene) (cis-1,4-PIP), poly(isobutylene) (PIB), poly(vinyl methylether)(PVME) and poly (propylene glycol) (PPG) by using two different probe methods. The reorientation dynamics of the molecular spin probe 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) from electron spin resonance (ESR) is related to the annihilation behaviour of the atomic ortho-positronium (o-Ps) one as obtained by positron annihilation lifetime spectroscopy (PALS). It was found that a slow to fast transition in the spin probe rotation mobility at the operationally defined spectral temperature parameter, T50G, is connected with the mean o-Ps lifetime, τ3 (T50G) = (2.04 ± 0.26) ns. Consequently, using the free-volume concept of the o-Ps annihilation in terms of a quantum-mechanical model of o-Ps lifetime this transition can be connected with the occurrence of the mean free volume hole, Vh (T50G) = (102 ± 17) Å3, nearly independent of the chemical composition and the basic structural relaxation parameters of the amorphous polymers investigated. Finally, the free volume hole distribution aspect of the slow to fast transition indicates the presence of a sufficient free volume fluctuation at T50G for both typical fragile PVME and strong PIB polymer and emphasizes the essential role of free volume in the spin probe dynamics.  相似文献   

14.
Magnetic resonance measurements, including nuclear magnetic resonance T1 and T1 and electron paramagnetic resonance T1 and T2e relaxation times are presented for polyanilines prepared according to a modification of the conventional synthesis and doping methods, showing a conductivity higher than that of standard HCl-polyaniline polymers. The results, obtained as a function of the doping rate, are interpreted in terms of one-dimensional diffusive motions of spin and charge carriers. High anisotropy in the spin diffusion rate is found. In the framework of the model of single metallic polymer chains, this leads to the conclusion that in our polyanilines the mechanism of conduction is more markedly one-dimensional. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
The formation of spin triplet, quintet, and singlet ground states within the 3d 6 electron configuration is investigated inD 4h , andD 3d symmetries employing irreducible tensor operator methods. Significant differences in the possible ground states are encountered between a complete CI and spin-orbit interaction treatment and an approximate calculation within the cubic5 T 2,1A1,3 T 1, and3 T 2 parents.  相似文献   

16.
Proton relaxation measurements have been used to investigate the effects of crosslinking on the segmental motion in cis-1,4-polybutadiene samples. The temperature dependence of proton spin–lattice relaxation time T1 and spin–spin relaxation time T2 at 60 and 24.3 MHz are reported in cis-1,4-polybutadiene (PB) samples with different crosslink density including uncrosslinked PB and samples with 140, 40, and 14 repeat units between crosslinks. In addition, spin-lattice relaxation times in rotating coordinate frame, T1p, have also been determined. The relaxation data are interpreted in terms of the effects of crosslinks on segmental chain motions. Because of their sensitivity to low-frequency motion, T2 data are of major interest. At temperatures well above the T1 minimum the small T2 temperature dependence resembles solidlike behavior reflecting the nonzero averaging of dipolar interactions due to anisotropic motion of the chain segments between crosslinks. The magnitude of T2 at 60°C is found to be proportional to the average mass between crosslinks.  相似文献   

17.
Dynamic nuclear polarization (DNP) is a technique to polarize the nuclear spin population. As a result of the hyperpolarization, the NMR sensitivity of the nuclei in molecules can be dramatically enhanced. Recent application of the hyperpolarization technique has led to advances in biochemical and molecular studies. A major problem is the short lifetime of the polarized nuclear spin state. Generally, in solution, the polarized nuclear spin state decays to a thermal spin equilibrium, resulting in loss of the enhanced NMR signal. This decay is correlated directly with the spin‐lattice relaxation time T1. Here we report [13C,D14]tert‐butylbenzene as a new scaffold structure for designing hyperpolarized 13C probes. Thanks to the minimized spin‐lattice relaxation (T1) pathways, its water‐soluble derivative showed a remarkably long 13C T1 value and long retention of the hyperpolarized spin state.  相似文献   

18.
The temperature and pressure dependence of 35Cl NQR frequency and spin lattice relaxation time (T1) were investigated in 2,3‐dichloroanisole. Two NQR signals were observed throughout the temperature and pressure range studied. T1 were measured in the temperature range from 77 to 300 K and from atmospheric pressure to 5 kbar. Relaxation was found to be due to the torsional motion of the molecule and also reorientation of motion of the CH3 group. T1 versus temperature data were analyzed on the basis of Woessner and Gutowsky model, and the activation energy for the reorientation of the CH3 group was estimated. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities were also obtained. NQR frequency shows a nonlinear behavior with pressure, indicating both dynamic and static effects of pressure. The pressure coefficients were observed to be positive for both the lines. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. The variation of spin lattice time with pressure was very small, showing that the relaxation is mainly due to the torsional motions of the molecules. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Quantitative measurements are important for imaging fluid content in porous media. Conventional MRI methods suffer from contrast because of relaxation times in porous media, resulting in measurements of apparent fluid content, not the true fluid content. We compare four magnetic resonance imaging methods for fluid content imaging in several water‐saturated reservoir core plugs: frequency‐encoded spin echo, single point ramped imaging with T1 enhancement, hybrid spin echo single point imaging (SE‐SPI), and T2 mapping SE‐SPI. 1‐D profiles obtained with each method were compared in terms of image quality, image sensitivity, and quantification of water content. The image quality of short T2 lifetime samples suffered from blurring in hybrid SE‐SPI images. Image sensitivity was the highest in the profiles obtained with frequency‐encoded spin echo. The quantification of frequency‐encoded spin echo, T2 mapping SE‐SPI, and hybrid SE‐SPI suffered in core plugs with a significant population of short T2 components because of T2 attenuation. Overall, single point ramped imaging with T1 enhancement was found to be the most general method for fluid content imaging. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The electron spin distribution in aniline and alkylaniline-Ni(AA)2 complexes is deduced from 1H, 13C and 14N contact shifts. The nitrogen hybridization state is given by the experimental values of aNHH/aN compared to the results of INDO calculations. The 13C relaxation times in complexed 4-ethyl aniline indicates an N-Ni distance of 2 A and an electron relaxation time T1 of the order of 10?10 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号