首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In this article, mixed convection in an open cavity with a heated wall bounded by a horizontal unheated plate is investigated experimentally. The heated wall is on the opposite side of the forced inflow. The results are reported in terms of wall temperature profiles of the heated wall and flow visualization. The range of pertinent parameters used in this experiment are Reynolds numbers (Re) from 100 to 2,000 and Richardson numbers (Ri) from 4.3 to 6,400. Also, the ratio between the length and the height of cavity (L/D) ranges from 0.5–2.0, and the ratio between the channel and cavity height (H/D) is equal to 1.0. The lack of experimental results on mixed convection in a channel with an open cavity below was an impetus for investigating this configuration when one cavity vertical wall is heated at uniform heat flux. The present results show that at the lowest investigated Reynolds number, the surface temperatures are lower than the corresponding surface temperatures for Re = 2,000 at the same ohmic heat flux. The flow visualization shows that for Re = 1,000, there are two nearly distinct fluid motions: a parallel forced flow in the channel and a recirculation flow inside the cavity. For Re = 100, the effect of a stronger buoyancy determines a penetration of thermal plumes from the heated plate wall into the upper channel. Moreover, the flow visualization shows that for lower Reynolds numbers, the forced motion penetrates inside the cavity, and a vortex structure is adjacent to the unheated vertical plate. At higher Reynolds numbers, the vortex structure has a larger extension while L/D is held constant.  相似文献   

2.
Mixed convection flow of Cu–water nanofluid inside a lid-driven square cavity with adiabatic horizontal walls and sinusoidal heating on sidewalls has been investigated numerically. The effects of increase in shear force for a fixed buoyancy force and effects of increase in buoyancy force for a fixed shear force were investigated. Effects of variations of Richardson number, phase deviation of sinusoidal heating, and volume fraction of nanoparticles on flow and temperature field were studied. The obtained results showed that for a constant Grashof number at all Richardson numbers, a clockwise eddy was developed inside the cavity, also the rate of heat transfer increases with decrease in Richardson number and increase of volume fraction of nanoparticles. For a constant Reynolds number the clockwise eddy is observed up to Ri = 1. For Ri = 10 a multicellular flow pattern is formed inside the cavity. Moreover it was found that when the Reynolds number is kept constant, the rate of heat transfer increases with increase in Richardson number.  相似文献   

3.
We examine the applicability of the Prandtl mixing length model to transverse momentum and mass flux in strongly confined, stably stratified turbulent shear flows. These fluxes were measured in the vertical diametral plane of lock-exchange flows in an inclined pipe by the simultaneous use of planar laser-induced fluorescence and particle image velocimetry at local Reynolds numbers ranging from Re = 580 to 1770 and Richardson numbers ranging from Ri = 0.26 and 1.6. Measurements indicate that the eddy diffusivities of mass and momentum are symmetric about the pipe axis, with their maximum at the axis. The corresponding Prandtl mixing lengths decrease with increasing distance from the pipe axis within the central 60% of the pipe cross-section. Within the range of experimental conditions, the mixing lengths at the axis increase linearly with Ri so that the corresponding turbulent Prandtl number Prt decreases with Ri. In contrast, Prt and the mixing lengths do not display a systematic dependence on Re. Comparison with unbounded and semi-bound shear flows suggests that the strong confinement imposed by the pipe wall may be constraining the integral length scale and Prandtl mixing lengths.  相似文献   

4.
Fluids engineering is extremely important in a wide variety of materials processing systems, such as soldering, welding, extrusion of plastics and other polymeric materials, Chemical Vapor Deposition (CVD), composite materials manufacturing. In particular, mixed convection due to moving surfaces is very important in these applications. Mixed convection in a channel, as a result of buoyancy and motion of one of its walls has received little research attention and few guidelines are available for choosing the best performing channel configuration, particularly when radiative effects are significant. In this study a numerical investigation of the effect of radiation on mixed convection in air due to the interaction between a buoyancy flow and an unheated moving plate induced flow in a uniformly heated convergent vertical channel is carried out. The moving plate has a constant velocity and moves in the buoyancy force direction. The principal walls of the channel are heated at uniform heat flux. The numerical analysis is accomplished by means of the commercial code Fluent. The effects of the wall emissivity, the minimum channel spacing, the converging angle and the moving plate velocity are investigated and results in terms of air velocity and temperature fields inside the channel and wall temperature profiles, both of the moving and the heated plates, are given. Nusselt numbers, both accounting and not for the radiative contribution to heat removal, are also presented.  相似文献   

5.
Laminar mixed convective buoyancy assisting flow through a two-dimensional vertical duct with a backward-facing step using nanofluids as a medium is numerically simulated using finite volume technique. Different types of nanoparticles such as Au, Ag, Al2O3, Cu, CuO, diamond, SiO2 and TiO2 with 5 % volume fraction are used. The wall downstream of the step was maintained at a uniform wall temperature, while the straight wall that forms the other side of the duct was maintained at constant temperature equivalent to the inlet fluid temperature. The walls upstream of the step and the backward-facing step were considered as adiabatic surfaces. The duct has a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The downstream wall was fixed at uniform wall temperature 0 ?? ??T?? 30 °C, which was higher than the inlet flow temperature. The Reynolds number in the range of 75 ?? Re ?? 225 was considered. It is found that a recirculation region was developed straight behind the backward-facing step which appeared between the edge of the step and few millimeters before the corner which connect the step and the downstream wall. In the few millimeters gap between the recirculation region and the downstream wall, a U-turn flow was developed opposite to the recirculation flow which mixed with the unrecirculated flow and traveled along the channel. Two maximum and one minimum peaks in Nusselt number were developed along the heated downstream wall. It is inferred that Au nanofluid has the highest maximum peaks while diamond nanofluid has the highest minimum peak. Nanofluids with a higher Prandtl number have a higher peak of Nusselt numbers after the separation and the recirculation flow disappeared.  相似文献   

6.
Measurements of heat transfer and fluid flow of turbulent boundary-layer air flow in natural and mixed convection over an isothermal two-dimensional, vertical forward-facing step are reported. The upstream and downstream walls and the step itself were heated to a uniform and constant temperature. Air velocity and temperature distributions and their turbulent fluctuations are measured simultaneously using a two-component laser-Doppler velocimeter (LDV) and a cold wire anemometer, respectively. The present study treats buoyancy-dominated mixed convection over a vertical forward-facing step and examines the effect of a small free stream velocity on turbulent natural convection. The experiment was carried out for a step height of 22 mm, for a range of free stream air velocities 0 m/s ? u ? 0.55 m/s (corresponding to a range of Reynolds numbers of 0 ? Re\abinf{s} ? 712), and a temperature difference, ΔT, of 30°C between the heated walls and the free stream air (corresponding to a local Grashof number Grxi = 6.45 × 1010). It was found that the reattachment length increases while the heat transfer rate from the downstream heated wall decreases as the small free stream velocity increases.  相似文献   

7.
W. Wu  C. Y. Ching 《实验传热》2013,26(4):298-316
Abstract

The laminar natural convection in an air-filled square cavity with a partition on the heated vertical wall was experimentally investigated. Temperature measurements and flow visualizations were performed for cases with heated and cooled vertical walls (corresponding to a global Grashof number Gr H of approximately 1.4 × 108) and non dimensional top wall temperatures θ T of 0.57 (insulated) to 2.3. Experiments were performed with an aluminum partition with non dimensional height H P /H of 0.0625 and 0.125 attached to the heated vertical wall at y/H = 0.65 and 0.95. The blockage effect and/or the thermal effect of the partition resulted in changes to the temperature and flow fields but were mainly limited to the vicinity of the partition. For the cases with the heated top wall, the change in the height of the partition at y/H = 0.95 resulted in changes to the ambient temperature outside the boundary layer due to the reduction of the size of the recirculating flow in the corner region. The changes in the partition height and the top wall temperature affected the blockage effect of the partition, resulting in the local Nusselt number near the corner region to be affected. The local Nusselt number over most of the heated vertical wall of the partitioned cavity (y/H < 0.7) was correlated to the local Rayleigh number in the form Nu = C · Ra n .  相似文献   

8.
The stabilizing effects of centrifugal forces, for slightly heated airflow in a 180° curved square channel with nearly fully developed entry flow, are studied by temperature fluctuation measurements for Reynolds numbers in the transition range. Re = 2,000–4,500. The relaminarization process is caused by secondary flow due to centrifugal forces. This study confirms the feasibility of using a fine thermocouple (12·7μm) to study flow transition phenomena. The results are presented in both time and frequency domains.  相似文献   

9.
A. Trejo  C. Garcia 《实验传热》2013,26(1):97-112
Transient heat transfer of liquid methane under forced convection in a 1.8 mm × 1.8 mm asymmetrically heated square channel was investigated. This study is aimed at understanding the heat transfer behavior of cryogenic propellant in cooling channels of a regeneratively cooled rocket engine at the start-up condition. To simulate high heat load conditions representative of regeneratively cooled rocket engines, a high heat flux test facility with cryogenic liquid handing capabilities was developed at the Center for Space Exploration Technology Research. The time history of inlet and outlet fluid temperatures and test section channel wall temperatures were measured at high heat flux conditions (from 1.19 to 3.80 MW/m2) and a Reynolds number (Re) range of 1.88 × 105 to 3.45 × 105. The measured wall temperature data point toward possible film boiling within the test section during certain tests, particularly with higher heat fluxes and lower Reynolds number conditions that resulted in higher wall temperatures. The transient average Nusselt numbers (NuL) of the channel obtained from the experimental measurements are lower than those calculated from the Sieder–Tate correlation (NuO); however, the ratio (NuL/NuO) increases with the increase in Reynolds number. The ratio is around 0.25 at the lower end of Re and then increases to 0.7 at the maximum Re studied in the present investigation.  相似文献   

10.
Experimental results on reversing non-stationary heat transfer are presented for filtration of an air flow through an immobile heat accumulating medium consisting of lead (D = 2.0, 3.5, and 4.5 mm) and glass (D = 3.2 mm) balls. The studied device imitated the cyclic modes of heat regeneration in the ventilation system for domestic and office rooms. Dependency between the time of flow switching and Re number was measured. The mathematical model describing heat transfer between a gas flow and an immobile layer of balls was developed. Good correspondence between the experimental data and calculation results is observed for high Reynolds numbers. For low Re numbers the effect of heat losses is considerable, and experimental time of flow switching is shorter than the calculation one. The work was financially supported by the President of the Russian Federation (Grant No. NSh 6526.2006.3), Russian Foundation for Basic Research (Grant No. 06-08-00982), Foundation “Global energy” and Program “Energy saving of SB RAS”.  相似文献   

11.
Using high-resolution direct numerical simulations, the height and Reynolds number dependence of high-order statistics of the energy dissipation rate and local enstrophy are examined in incompressible, fully developed turbulent channel flow. The statistics are studied over a range of wall distances, spanning the viscous sublayer to the channel flow centerline, for friction Reynolds numbers Reτ=180 and Reτ=381. The high resolution of the simulations allows dissipation and enstrophy moments up to fourth order to be calculated. These moments show a dependence on wall distance, and Reynolds number effects are observed at the edge of the logarithmic layer. Conditional analyses based on locations of intense rotation are also carried out in order to determine the contribution of vortical structures to the dissipation and enstrophy moments. Our analysis shows that, for the simulation at the larger Reynolds number, small-scale fluctuations of both dissipation and enstrophy show relatively small variations for z+?100.  相似文献   

12.
竖直圆管中超临界压力CO2对流换热实验研究   总被引:5,自引:1,他引:4  
本文对超临界压力CO2在竖直加热圆管内的对流换热进行了实验研究,比较了不同流向、不同热流密度等对流动和换热的影响。实验结果表明,管内径为2mm时,在低进口Re条件下,由于浮升力影响导致层流向湍流提前转变, 对流换热增强;与向上流动相比,向下流动更易由层流转变为湍流;向下流动的换热要强于向上流动,表明浮升力对换热有很大影响。对于管内径为0.27 mm的微细圆管,当进口Re高于104时,浮升力的影响可以忽略,对流换热系数的变化完全由物性的变化尤其是cp的变化导致。  相似文献   

13.
D. S.-K. Ting 《实验传热》2013,26(4):357-370
The effect of a 6.35-mm-diameter cylindrical rod on the transitional flow in a 50.8-mm square channel has been investigated experimentally. A Chromel-Constanian thermocouple with 12,7-fim-diameter leads was used to measure the temperature fluctuations of slightly heated air (5°C) flowing in the channel, over the range of Reynolds number Re = 1,500-3,500. Without the rod, laminar-to-turbulent transition occurred at Re ≈ 2,500-3,500 in the empty square channel The rod destabilized the flow and advanced the onset of fluctuations profoundly. Within the wake of the rod, large fluctuations were detected. Temperature measurements also reviewed the existence of regular vortex shedding at Re = 1,500, and the development of the wake downstream of the rod. This study confirmed the feasibility of using a fine thermocouple for studying obstructed channel flow.  相似文献   

14.
The results of numerical computations of a free laminar convection and heat transfer between two parallel isothermal plates in the presence of a single rib on the channel surface are presented. The investigations have been conducted for a channel with the aspect ratio AR = L/w = 10, where L is the channel height, and w is the distance between the plates. An infinitely thin adiabatic rib was located on one of the channel walls in the middle of its height. The relative rib height l/w was varied in the range 0÷0.8. The wall temperature was higher than the ambient temperature, and the Rayleigh number was varied in the range Ra = 102÷105. The main attention has been paid to the study of the influence of the rib height and the Rayleigh number on local and integral heat transfer and the Reynolds number in the channel (the convective thrust). A fundamental difference in the heat transfer over the channel height has been shown on the ribbed wall and on a smooth surface. The computational results have been compared with the case of a symmetric distribution of the ribs on the both walls with the integral height equal to a single rib.  相似文献   

15.
The unsteady turbulent channel flow subject to the temporal acceleration is considered in this study. Large-eddy simulations were performed to study the response of the turbulent flow to the temporal acceleration. The simulations were started with the fully developed turbulent channel flow at an initial Reynolds number of Re0 = 3500 (based on the channel half-height and the bulk-mean velocity), and then a constant temporal acceleration was applied. During the acceleration, the Reynolds number of the channel flow increased linearly from the initial Reynolds number to the final Reynolds number of Re1 = 22,600. The effect of grid resolution, domain size, time step size on the simulation results was assessed in a preliminary study using simulations of the accelerating turbulent flow as well as simulations of the steady turbulent channel flow at various Reynolds numbers. Simulation parameters were carefully chosen from the preliminary study to ascertain the accuracy of the simulation. From the accelerating turbulent flow simulations, the delays in the response of various flow properties to the temporal acceleration were measured. The distinctive features of the delays responsible for turbulence production, energy redistribution, and radial propagation were identified. Detailed turbulence statistics including the wall shear stress response during the acceleration were examined. The results reveal the changes in the near-wall structures during the acceleration. A self-sustaining mechanism of turbulence is proposed to explain the response of the turbulent flow to the temporal acceleration. Although the overall flow characteristics are similar between the channel and pipe flows, some differences were observed between the two flows.  相似文献   

16.
本文用实验方法研究了浓度为1500wppm的聚丙烯酰胺(PAM)溶液在周期性渐扩渐缩通道内层流流动与换热问题。研究表明,大约经过8个周期后流动进入充分发展阶段,而换热则要经过大约20个周期后才能进入充分发展阶段。在充分发展阶段,阻力系数和换热Nusselt数随广义 Reynolds数的变化关系式分别为: f= 135 × Re*-0.632和 Nu= 10.5 × Re*0.598。  相似文献   

17.
对二维平行平板通道入口段内设置协同式折流翅片的层流换热和流动特性进行了数值模拟。研究了翅片倾角以及通道长高比L/H对换热和阻力特性的影响。研究的Re数范围为100-1000。在翅片倾角β=0°-21.8°范围内, 通道内平均Nu数随翅片倾角β的增大而单调增大,随通道长度增大而单调减小。如果从相同泵功下强化效果来评价, 则是小倾角翅片较优,并且随Re数增大强化效果减弱。另外,分析表明,场的协同确实与换热率密切相关。  相似文献   

18.
The laminar boundary layer separation flow over a two-dimensional bump controlled by synthetic jets is experimentally investigated in a water channel with hydrogen-bubble visualisation and particle image velocimetry (PIV) techniques. The two-dimensional synthetic jet is applied near the separation point. Two Reynolds numbers (Re = 700 and 1120) based on the bump height and free-stream velocity are adopted in this experiment, and seven different excitation frequencies at each Reynolds number are considered, focusing on the separation control as well as the vortex dynamics. The experimental results show that the optimal control can only be achieved within some excitation frequencies at both Reynolds numbers. However, beyond this range, further increasing the excitation frequency leads to an increase in the separation region. The proper orthogonal decomposition (POD) technique and vortex identification by swirling strength (Λci) are applied for the deeper analysis of the separated flow. The reconstructed Λci field by the first four POD modes is used and vortex lock-on phenomenon is observed. It is found that the negative synthetic jet vortex with clockwise rotation draws the separated wake shear layer as it is convected downstream, and then they syncretise together. Thus, the new vortex is induced and shedding downstream periodically.  相似文献   

19.
罗松  于勇 《气体物理》2019,4(2):30-43
对Mo=10-8~10-12及Re=5~750范围内的上升气泡与壁面垂直碰撞问题进行了理论求解,研究了不同控制参数下气泡碰壁反弹的规律.气泡上升和碰撞过程的运动方程考虑了浮力、液体阻力、附加质量力和与壁面碰撞时引起的薄膜诱导力.气泡碰壁过程气泡界面与壁面形成的液膜厚度变化规律由Stokes-Reynolds方程计算得到.膜内气泡变形引起的流体压强采用Young-Laplace方程求解.结果表明,基于SRYL方程的薄膜诱导力模型可以很好地预测不同Reynolds数下气泡0到多次的反弹轨迹,计算结果与实验结果吻合良好.气泡在碰壁反弹过程中会形成丰富的薄膜形状,如酒窝状变形,丘疹状变形和涟漪状变形.气泡界面变形会引起膜内压强的变化,压强的分布规律与气泡界面形状有着重要的关系.气泡在与壁面碰撞的过程中,薄膜诱导力会起主导作用,且随着Reynolds数的增加薄膜诱导力最大量级增大.气泡碰撞壁面时,反弹次数与Reynolds数有着直接的联系,不同Morton数下的气泡均在相同Reynolds数附近发生气泡反弹次数的变化.   相似文献   

20.
The transition to turbulence in plane Poiseuille flow (PPF) is connected with the presence of exact coherent structures. We here discuss a variety of different structures that are relevant for the transition, compare the critical Reynolds numbers and optimal wavelengths for their appearance, and explore the differences between flows operating at constant mass flux or at constant pressure drop. The Reynolds numbers quoted here are based on the mean flow velocity and refer to constant mass flux. Reynolds numbers based on constant pressure drop are always higher. The Tollmien–Schlichting (TS) waves bifurcate subcritically from the laminar profile at Re = 5772 at wavelength 6.16 and reach down to Re = 2610 at a different optimal wave length of 4.65. Their streamwise localised counter part bifurcates at the even lower value Re = 2334. Three-dimensional exact solutions appear at much lower Reynolds numbers. We describe one exact solutions that has a critical Reynolds number of 316. Streamwise localised versions of this state require higher Reynolds numbers, with the lowest bifurcation occurring near Re = 1018. The analysis shows that the various branches of TS-waves cannot be connected with transition observed near Re ≈ 1000 and that the exact coherent structures related to downstream vortices come in at lower Reynolds numbers and prepare for the transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号