共查询到9条相似文献,搜索用时 0 毫秒
1.
In this article, the effect of applying an electric field on the performance of a two-phase closed thermosyphon is investigated experimentally. A CuO/water nanofluid is used as the working fluid in the present investigation; 40% of the evaporator volume is filled with the working fluid during the tests. An electric field in various voltages ranging from 5 to 20 kV is applied to the system. Also, the input power supplied to the evaporator varies between 60 to 120 W. The thermal efficiency and the thermal resistance of the two-phase closed thermosyphon are evaluated in various strengths of electric field and different volume fractions. It is found that using the nanofluid and applying an electric field could increase the thermal efficiency by up to 30% as compared with the case in which the working media is pure water and no electric field is applied. To illustrate the effect of the electric field on the heat transfer enhancement, the augmentation Nusselt number, defined as the ratio of the Nusselt numbers after and before applying the electric field, is discussed. The results show that utilizing an electric field is more advantageous when the input power applied to the system is lower. 相似文献
2.
3.
4.
5.
6.
7.
A theoretical and experimental study was carried out on the thermal performance of a pin fin array heat sink. A theoretical model was utilized based on the success of prior research that has the capability of predicting the influence of various geometrical, thermal, and flow parameters on the effective thermal resistance of the heat sink. An experimental investigation was carried out for measuring the thermal performance of the heat sink, and the overall convective heat transfer coefficient for the fin bundle, including the thermal and flow bundle effect. Utilizing the new empirical correlations, theoretical predictions were made and experimentally validated for a wide range of parameters for combined forced and natural convection in the assisting flow configuration. Both the theoretical model and experimental data indicated the existence of optimal fin spacing. 相似文献
8.
Adel Almoslh Babak Aghel Falah Alobaid Christian Heinze Bernd Epple 《Entropy (Basel, Switzerland)》2022,24(9)
An experimental study was conducted in a sieve tray column. This study used a simulated flue gas consisting of 30% CO2 and 70%. A 10% mass fraction of methyl diethanolamine (MDEA) aqueous solution was used as a solvent. Three ramp-up tests were performed to investigate the effect of different load changes in inlet gas and solvent flow rate on CO2 absorption. The rate of change in gas flow rate was 0.1 Nm3/h/s, and the rate of change in MDEA aqueous solution was about 0.7 NL/h/s. It was found that different load changes in inlet gas and solvent flow rate significantly affect the CO2 volume fraction at the outlet during the transient state. The CO2 volume fraction reaches a peak value during the transient state. The effect of different load changes in inlet gas and solvent flow rate on the hydrodynamic properties of the sieve tray were also investigated. The authors studied the correlation between the performance of the absorber column for CO2 capture during the transient state and the hydrodynamic properties of the sieve tray. In addition, this paper presents an experimental investigation of the bubble-liquid interaction as a contributor to entropy generation on a sieve tray in the absorption column used for CO2 absorption during the transient state of different load changes. 相似文献
9.
We report the investigation on the low-temperature oxidation of cyclohexane in a jet-stirred reactor over 500-742 K. Synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) was used for identifying and quantifying the oxidation species. Major products, cyclic olefins, and oxygenated products including reactive hydroperoxides and high oxygen compounds were detected. Compared with n-alkanes, a narrow low-temperature window (~80 K) was observed in the low-temperature oxidation of cyclohexane. Besides, a kinetic model for cyclohexane oxidation was developed based on the CNRS model[Combust. Flame 160, 2319 (2013)], which can better capture the experimental results than previous models. Based on the modeling analysis, the 1,5-H shift dominates the crucial isomerization steps of the first and second O2 addition products in the low-temperature chain branching process of cyclohexane. The negative temperature coefficient behavior of cyclohexane oxidation results from the reduced chain branching due to the competition from chain inhibition and propagation reactions, i.e. the reaction between cyclohexyl radical and O2 and the decomposition of cyclohexylperoxy radical, both producing cyclohexene and HO2 radical, as well as the decomposition of cyclohexylhydroperoxy radical producing hex-5-en-1-al and OH radical. 相似文献