共查询到20条相似文献,搜索用时 0 毫秒
1.
The method of sequential perturbations is applied to find the uncertainty in estimated surface temperature and heat flux from a two-dimensional analytical inverse heat conduction problem related to impinging jet quenching experiments. It is shown that for meaningful uncertainty estimates, the inverse solution itself must be formulated such that it can be interpreted as giving average surface conditions over a small period of time and space. A procedure for estimating the time and space resolution limits of the solution is proposed. 相似文献
2.
Abstract This article aims to employ a two-dimensional inverse heat conduction technique in designing an experiment for accurately estimating the local convective heat transfer coefficient in slot jet impingement, given temperature measurements at some interior locations in the target plate. The method uses a sequential procedure together with the Beck function specification approach. Solution accuracy and experimental errors are examined using simulated temperature data. It is concluded that a good estimation of the space variable heat transfer coefficient can be made from the knowledge of the transient temperature recordings. The technique is used in a series of numerical experiments to provide the optimum experimental design for a slot jet impingement heat transfer investigation. 相似文献
3.
提出双曲传热反问题热物性参数和边界条件多宗量联合反演的一般数值求解模式,考虑了非均质和分布参数的影响,时域上采用时域精细算法进行离散,建立了便于敏度分析的有限元正演模型.由最小二乘原理建立反演模型,应用共轭梯度法进行求解.探讨了时间步长和测量误差对反演结果的影响,并进行了数值验证. 相似文献
4.
A numerical/experimental inverse procedure was employed to estimate the temperature-dependent thermal conductivity of a solid body in which 1D heat conduction in a top heated cylindrical sample is assumed. The emphasis is focused on the issue of sensitivity of results to selected assumptions made in inverse calculations. It has been found that the accuracy of heat capacity evaluation brings the largest contribution to final errors (up to 74%). Density accounts for one-fourth to one-third of the total error of determination. The failure to ensure unidirectional heat conduction in a sample during an experiment is important only at elevated temperatures. 相似文献
5.
6.
研究一维热传导方程热源反问题.给出基于最小二乘支持向量机(LS-SVM)求解的半解析表达式,此外还给出一种参数调节方法以及算法稳定性的证明.数值实验表明该方法具有较高的数值精度和稳定性. 相似文献
7.
The convective heat transfer coefficients resulting from a slot jet on a plane surface have been estimated by using the real measured temperatures in the plate and inverse method. In this study, the inverse method used the conjugate gradient method with an adjoint equation. Distributions of the local heat transfer coefficient on the impingement surface were determined for various Re and H/Dh. It was found the heat transfer coefficients generally tended to decrease with increasing separation distance and to increase with an increase in Reynolds number. This presented method is able to estimate the variation of the local Nusselt number with time. 相似文献
8.
本文采用SST湍流模型模拟了类前缘通道内蒸汽射流阵列冲击冷却的流动与传热特性,分析了雷诺数(Re=10000~50000)、孔径比(d/H=0.5~0.9)和孔间距比(S/H=2~6)对流动及传热性能的影响规律,得到了相应的传热和摩擦关联式。结果表明:在不同雷诺数下,d/H从0.5到0.9变化时,通道压力损失系数降低了76%~79%,靶面平均努塞尔数降低了45%~49%;S/H从2增至6时,通道压力损失系数增加了1.64~1.92倍,靶面平均努塞尔数增加了54%~64%;增大d/H、减小S/H可有效提高类前缘通道蒸汽冲击冷却的综合热力系数。本文研究结果可为未来先进燃气轮机高温涡轮叶片蒸汽冷却结构的设计提供参考和借鉴。 相似文献
9.
介绍的高效低温传热方法主要包括 :自然循环冷却法和基于自然循环预冷及低温热管的高效低温冷却方法。自然循环冷却法的特点是在大温差条件下实现物体的快速冷却。一旦被冷却物体到达或接近低温液体的温度 ,将产生循环动力不足的情况 ,必须采用诸如气体引射或容器自增压等方法加以解决。而低温热管的特点在于能在小温差条件下 ,传递大量的热能。文中将自然循环预冷法及低温热管技术有机结合 ,综合自然循环和低温热管的优点 ,取长补短 ,既可以在很短的时间内使被冷却物体的温度降低下来 ,又可以保证被冷却物体的温度波动较小。文中还详细给出了基于自然循环预冷及低温热管的高效低温传热单元的设计及试验结果 相似文献
10.
11.
燃烧室出口辐射对气膜冷却传热影响研究 总被引:2,自引:0,他引:2
燃气轮机高温透平中包含对流/导热/辐射等复杂传热现象。本文依托高温流热固耦合实验台,提出燃烧室与透平联合计算的方法,采用数值模拟和实验对比的方式分析了平板气膜冷却的对流/导热/辐射传热特性。同时研究了不同燃气吸收系数以及不同进口辐射条件对于平板气膜冷却的表面温度分布的影响。结果表明:辐射传热是燃气轮机首级高温叶片传热特性的重要影响因素,辐射传热使得实验平板温度抬升50~70 K,燃烧室/透平联合计算方法有效地分析了燃烧室出口辐射强度对高温平板气膜冷却辐射传热的影响;高温燃气辐射特性对于平板温度分布具有明显影响。 相似文献
12.
13.
14.
Abstract The effect of the cooling performance of a copper metal foam heat sink under buoyancy-induced convection is investigated in this work. Experiments are conducted on copper metal foam of 61.3% porosity with 20 pores per inch. The pressure drop experiment is carried out to find the permeability and foam coefficient of the porous media. It is found that the property of porous media changes by changing the angle of inclination of the porous media from a horizontal to a vertical position while keeping the orientation and porosity the same. The Hazen-Dupuit Darcy model is used to curve-fit the longitudinal global pressure drop versus the average fluid speed data from an isothermal steady-flow experiment across the test section of the porous medium. The study concludes that the permeability and foam coefficient for copper foam is found to be 1.11 × 10?7 m2 and 79.9 m?1, respectively. The heat transfer study shows that the thermal performance of copper metal foam is 35–40% higher than the conventional aluminum metal heat sink under an actual conventional mode. 相似文献
15.
冷库预冷流动传热物理场分布研究 总被引:1,自引:0,他引:1
冷库预冷是传统的果蔬采后预冷方法,前人研究通过数值模拟使冷库预冷过程的流场和温度场可视化,本文进一步分析空气流速、局部平均空气龄、温度、熵产、?损和(煨)耗散等物理场的分布特性,指出其间存在密切联系.塑料筐周围的空气流速和流向与内部的局部平均空气龄有关,并影响内部的传热速率.传热熵产率、传热?损率和(煨)耗散率的分布特... 相似文献
16.
通过导热反问题反演求解导热系数通常误差较大,本文构建考虑热损耗条件下的虚拟薄板模型精确求解导热系数。首先通过数值算例验证模型的准确性和稳定性,正向问题使用有限差分法进行求解,反问题求解采用人工蜂群算法进行目标函数最优化。然后搭建第二类边界条件下导热正向装置,进行导热系数实例反演和实验研究,并将新模型与理论模型反演结果对比分析。结果表明理论模型反演结果的相对误差约为-14.76%,而新模型下导热系数反演相对误差达到-4.67%。新模型较理论模型反演结果更精确,有效降低了热损耗对反演的影响,提高了反演精度,更符合实际工况。 相似文献
17.
金属凝固过程中,铸件与铸型间的界面换热系数是数值模拟所必需的边界条件之一.充分考虑非线性瞬态热传导过程测温数据的误差特点,根据Tikhonov正则化理论,构造合适的正则化泛函,利用Arcangeli准则和Morozov偏差原理确定正则参数,采用灵敏度系数和Newton-Raphson迭代法求解该泛函.具体的案例分析表明,该方法克服了热传导反问题的不适定性,能够保证辨识结果的稳定性和精度.与其他方法相比,随着测温误差的增大,该方法具有较高的辨识精度. 相似文献
18.
19.
A Study on Nucleate Boiling Heat Transfer Characteristics of Acetone on Smooth and Indented Surfaces
This article presents the nucleate boiling heat transfer characteristics of acetone at one bar on smooth and enhanced circular stainless steel surfaces (SS 316) of 20 mm diameter for heat flux between 1 and 4 W cm? 2, which mimic the operating condition of a typical immersion electronic cooling system. The experimental heat transfer coefficient from the smooth surface is validated against Borishanski correlation [1] within acceptable limits of ± 5%. The steel smooth surface is enhanced by providing 100 equally spaced indents of 0.5 mm diameter and 0.05 mm depth. The experimental results indicate that the enhanced surface shows a good shift in the boiling curve and thus, enhancing the nucleate boiling heat transfer at a lesser wall super heat when compared to the smooth surface by around 35% for tested condition. The effect of subcooling on nucleate boiling in enhanced surface reveal that the heat transfer coefficient degrade by 40 to 55% for a sub cooling of 5 to 10 K. The influence of material is studied by a similar enhanced surface made of brass and compared for the same working condition. The brass enhanced surface showed an improved of around 50% against the steel-enhanced surface. Also, the influence of fluid is studied by comparing acetone and n-pentane, which showed that the latter an enhancement in heat transfer coefficient of 50% over the former. 相似文献
20.
An experimental study has been conducted to find the heat transfer characteristics of methane/air flames impinging normally to a flat surface using different burner geometries. The burners used were of nozzle, tube, and orifice type each with a diameter of 10 mm. Due to different exit velocity profiles, the flame structures were different in each case. Because of nearly flat velocity profile, the flame spread was more in case of orifice and nozzle burners as compared to tube burner. Effects of varying the value of Reynolds number (600–2500), equivalence ratio (0.8–1.5) and dimensionless separation distance (0.7–8) on heat transfer characteristics on the flat plate have been investigated for the tube burner. Different flame shapes were observed for different impingement conditions. It has been observed that the heat transfer characteristics were intimately related to flame shapes. Heat transfer characteristics were discussed for the cases when the flame inner reaction cone was far away, just touched, and was intercepted by the plate. Negative heat fluxes at the stagnation point were observed when the inner reaction cone was intercepted by the plate due to impingement of cool un-burnt mixture directly on the surface. Different heat transfer characteristics were observed for different burner geometries with similar operating conditions. In case of tube burner, the maximum heat flux is around the stagnation point and decay is faster in the radial direction. In case of nozzle and orifice burner, the heat transfer distribution is more uniform over the surface. 相似文献