首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Esterification of carboxylic acids capable of forming ketene intermediates upon treatment with carbodiimides permits the selective acylation of alcohols in the presence of phenols lacking strong electron-withdrawing groups. The selectivity of acylations involving highly acidic phenols could be reversed through the addition of catalytic amount of acid. Esterification of other carboxylic acids was found to proceed through the formation of symmetric anhydrides and provide the opposite chemoselectivity. In both cases the relative acylation rates of substituted phenols are consistent with a reaction mechanism involving an attack of phenolate anions on electrophilic intermediates such as ketenes and symmetric anhydrides, with the carbodiimides serving both as an activating reagent and as a basic catalyst.  相似文献   

2.
The oxidation of in situ generated Ru vinylidenes to ketenes is realized with tethered sulfoxides. The result is a Ru‐catalyzed oxidative transformation of terminal alkynes to highly valuable ketenes. Moreover, the ketenes generated here were shown to undergo characteristic ketene [2+2] cycloaddition reactions with tethered alkenes and external imines, yielding synthetically versatile bicyclic cyclobutanones and β‐lactams, respectively.  相似文献   

3.
利用半经验分子轨道理论AM1方法,研究了烯酮及取代烯酮与环戊二烯环加成反应机理。采用Berny梯度法优化得到各反应的过渡态和中间体,并进行了振动分析确认。计算结果表明,该环加成反应是按照协同的非同步途径进行的,经过一个四元环发生扭曲的过渡态,并有部分电荷从环戊二烯迁移到烯酮或取代烯酮上,前线轨道分析表明反应机理为“2×[1+1]”机理;而氯甲基取代的烯酮与环戊二烯的环加成反应是按照分步途径发生的。计算结果可以很好地说明实验所观察到的立体选择性,并根据烯酮上取代基的电子效应和位阻效应对反应机理的影响进行了分析。  相似文献   

4.
Second-order rate constants (k(Nu)) have been measured for the addition of amines to ketenes 4-6 in acetonitrile solution by the laser flash photolysis technique. These ketenes are formed from a photochemical Wolff rearrangement of diazoketones 1-3, respectively. For all diazoketones studied, the presence of amines as nucleophiles in the reaction medium results in the formation of an intermediate that later converts to the amide. The rate of formation of these intermediates is linearly dependent on amine concentration. Various classes of amines, such as primary, secondary, and tertiary, aromatic, and aliphatic, have been used to investigate the ketene reactivity, and rate constants in the range 10(4)-10(9) M(-1) s(-1) have been measured. Reaction rates are dependent upon steric effects in both the ketene and the nucleophile, which is consistent with a reaction mechanism involving nucleophilic attack at Calpha in the molecular plane of the ketene. On the basis of these data, a set of N(+) parameters for the reaction of amines with ketenes was determined.  相似文献   

5.
Calter MA  Orr RK  Song W 《Organic letters》2003,5(24):4745-4748
[reaction: see text] The cinchona alkaloid-catalyzed dimerization of monosubstituted ketenes generated in situ from the reaction of acid chlorides and diisopropylethylamine yields ketene dimers in high yields and enantioselectivities. This reaction tolerates sterically demanding and functionally diverse substituents. Kinetic studies suggest that the rate-determining step for the reaction is the deprotonation of the acid chloride by the tertiary amine to form ketene and that the stereochemistry-forming step is addition of an ammonium enolate with ketene.  相似文献   

6.
Kinetics of competitive consecutive electron transfer was used to determine ionization potentials of transient species. Kinetics of two-stage electron transfer reactions in aprotic solvent was studied using 355 nm laser flash photolysis. The concentrations of transients produced by the laser flash photolysis were monitored by their light absorption. Triplet-excited tetrachloro-p-benzo-quinone (p-chloranil) generated by a 355 nm laser flash oxidized diethyl ketene, diphenyl ketene, or phenyl ethyl ketene to form radical cations. The ketene radical cations, in turn, oxidized tertiary amine, forming ground state ketene and ammonium radical cation. The kinetics of the disappearance of ketene radical cations (and/or appearance of ammonium radical cations) due to consecutive, competitive electron transfer to ketene and p-chloranil radical cations was monitored. By monitoring kinetics in the presence of tertiary amines with different oxidation potentials, it was established that in acetonitrile the oxidation potential of diethyl ketene was 5.4 eV; for phenyl ethyl ketene, it was approximately 4.8 eV; and for diphenyl ketene, it was 4.6 eV. The results were in agreement with the oxidation potentials of ketenes computed using published data.  相似文献   

7.
In the chemistry toward generating benzdiyne from five benzenetetracarboxylic dianhydride derivatives, ketene formation was exclusively observed in the photolysis of difluorobenzenetetracarboxylic dianhydride in a nitrogen matrix at 13 K. Two ketenes were formed concomitantly with difluorobenzdiyne. These ketenes were identified on the basis of good agreement between the observed and calculated (B3LYP/6-31G level) IR spectra. Neither ketene contained the five-membered-ring moiety as cyclopentadienylideneketene, which is formed by Wolff rearrangement in the benzyne chemistry. The first generated ketene was assigned to a ketene with a cyclopropene moiety, and the second, to a ketene with a butadiyne moiety. The first generated ketene was a major product in the photolysis and was formed by cleavage of the bond connecting the ketene group and the C-F carbon and not the bond connecting the ketene group and the carbene moiety. Thus the structures of these ketenes indicated that a unprecedented ring cleavage, rather than Wolff rearrangement, is the dominant process in the benzdiyne chemistry.  相似文献   

8.
Imidazol-2-ylidenes, a family of N-heterocyclic carbenes (NHC), are efficient catalysts in the transesterification involving numerous esters and alcohols. Low catalyst loadings of aryl- or alkyl-substituted NHC catalysts mediate the acylation of alcohols with enol acetates in short reaction times at room temperature. Commercially available and more difficult to cleave methyl esters react with primary alcohols in the presence of alkyl-substituted NHC to efficiently form the corresponding esters. While primary alcohols are selectively acylated over secondary alcohols with use of enol esters as acylating agents, methyl and ethyl esters can be employed as protective agents for secondary alcohols in the presence of the more active alkyl-substituted NHC catalysts. The NHC-catalyzed transesterification protocol was simplified by generating the imidazol-2-ylidene catalysts in situ.  相似文献   

9.
The reactivity and catalytic potential of the tin salicylaldoximate cluster [(Me2Sn)2(Me2SnO)(OCH3) (HONZO)(ONZO)] ( 1 ), with HONZOH = o‐HON?CH? C6H4OH, on the acylation reaction of various alcohols with ethyl acetate is reported. The catalyst is active toward primary and unhindered secondary alcohols, but inefficient toward tertiary and secondary bulky alcohols and phenols. A possible mechanism for the transesterification reaction catalyzed by 1 , accounting for the influence of steric factors, is proposed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A notable and obvious ketene substituent-dependent effect of temperature on the stereoselectivity in the Staudinger reaction was observed. Most Staudinger reactions show concave Eyring plots characterized by two lines with an inversion point, following the principle of isoinversion. Their cis-selectivities decrease with increasing temperature. Reactions involving intramolecular p-pi and pi-pi interactions between the ketene substituents and imine C-substituents reveal protruding, S-shaped or straight-line Eyring plots. Their cis-selectivities increase with increasing temperature in a certain temperature region because such interactions enhance the cis-selectivity. Staudinger reactions involving cyclic imines with different ketenes clearly indicate that the temperature-dependent stereoselectivity is caused by the different rate increases of the direct ring closure, which are affected by the p-pi and pi-pi interactions between ketene substituents and imine C-substituents if they exist, and the isomerization of the zwitterionic intermediates generated from ketenes and imines during the change in the reaction temperature, not by the competition of the imine exo and endo attacks to the ketenes. Our results also indicate that nonlinear Eyring plots do not always reveal a change of the stereoselectivity-determining step. Thus, one should use them carefully to determine any changes in the stereoselectivity-determining step during the change in the reaction temperature.  相似文献   

11.
12.
New enantiopure polycyclic norbornane-derived spiro-β-lactams were synthesized by means of a Staudinger ketene–imine reaction between unsymmetrical bicyclic chiral ketenes, generated from differently substituted norbornane carboxylic acids, and (E)-N-benzyl-N-(phenylmethylene)amine, with high yields and moderate to good stereoselectivities. The diastereoisomeric results were rationalized taking into account the increasing steric encumbrance present on the norbornane skeleton and the stability of the products. The configurations of the newly formed stereocenters of spiro-β-lactams were assigned on the basis of 2D NMR experiments and X-ray analysis. Spiro-β-lactams were subjected to acid hydrolysis obtaining the corresponding norbornane-derived β-amino acids.  相似文献   

13.
Ion-molecule reactions between the O=P(OCH(3))(2) (+) phosphonium ions and five aliphatic esters (methyl acetate, methyl propionate, methyl 2-methylpropionate, methyl butyrate and ethyl acetate) were performed in a quadrupole ion trap mass spectrometer. The O=P(OCH(3))(2) (+) phosphonium ions, formed by electron ionization from neutral trimethyl phosphite, were found to react with aliphatic esters to give an adduct ion [RR'CHCOOR", O=P(OCH(3))(2)](+), which loses spontaneously a molecule of ketene CH(2)=CO or substituted ketenes RR'C=CO. Isotope-labeled methyl acetate was used to elucidate fragmentation mechanisms. The potential energy surface obtained from B3LYP/6-31G(d,p) calculations for the reaction between O=P(OCH(3))(2) (+) and methyl acetate is described.  相似文献   

14.
Using a series of Ir(I) and Rh(I) ketene complexes, conclusions about the structure and bonding of complexes of the fundamentally important ketene ligand class are reached. In a unique comparison of X-ray structures of the same metal fragment to ketenes in both the eta(2)-(C,C) and the eta(2)-(C,O) binding mode, the Ir-Cl bond distances in complexes of trans-Cl(Ir)[P(i-Pr)(3)](2) to phenylketene [4, eta(2)-(C,C)] and diphenylketene [2a, eta(2)-(C,O)] are 2.371(3) and 2.285(2) A, respectively. This would be consistent with greater trans influence of a ketene ligand bound to a metal through its C=C bond than one connected by its C=O bond. Back-bonding of Ir(I) and Rh(I) to diphenylketene was assessed using trans-Cl(M)[P(i-Pr)(3)](2)[eta(2)-(C,O)-diphenylketene] (2a and 2d). Most bond lengths and angles are identical, but slightly greater back-bonding by Ir(I) is suggested by the somewhat greater deformation of the ketene C=C=O system [C-C-O angles are 136.6(4) and 138.9(4) in the Ir and Rh cases 2a and 2d, respectively]. Syntheses of new labeled ketenes Ph(2)C=(13)C=O and Ph(2)C=C=(18)O and their Ir(I) and Rh(I) complexes are reported, along with the generation of an Ir(I) complex of PhCH=(13)C=O. The effects of isotopic substitution on infrared absorption data for ketene complexes are presented for the first time. Preliminary normal coordinate mode analysis allowed definitive assignment of absorptions ascribed to the C-O stretching frequencies of coordinated ketenes, which are near the absorptions for aromatic ring systems commonly found as substituents on ketenes. For free diphenylketene and four of its complexes and a phenylketene complex characterized by X-ray diffraction, the magnitude of the (13)C-(13)C coupling between the two ketene carbons is correlated to carbon-carbon bond distance.  相似文献   

15.
Spiro-β-lactams from [2+2]-Cycloaddition of Ketenes to Iminolactones Iminolactones (‘Isoimides’) derived from maleic anhydride and amines are shown to react with various ketenes in a [2+2]-cycloaddition mode. Either preformed ketenes or the combination acid chloride/tertiary amine can be used as reagent. The reaction products have been assigned the spiro-β-lactam structure. Unsubstituted ketene is inert under the reaction conditions. It is possible to synthesize the spiro-β-lactams in a one-pot procedure, starting from a mixture of maleic anhydride/amine and excess dialkylketene.  相似文献   

16.
MO quantities by CNDO/2 method on several valence isomeric ketenes and structurally corresponding allene molecules were calculated to evaluate the influence of structural feature on magnitude of back-donation of oxygen n-electrons in ketene, and to rationalize an unusual cycloaddition involved in diphenyl ketene.  相似文献   

17.
The concave shielding of the active site of enzymes has been transferred to standard reagents of organic chemistry and concave reagents have been synthesized which possess a lamp-like geometry (concave 1,10-phenanthrolines 1–2, concave pyridines 3). The special concave geometry of these reagents is responsible for their selectivity in metal ion catalyzed (Pd-catalyzed allylations, Cu(I)-catalyzed cyclopropanations) and base catalyzed (acylation of alcohols by ketenes) reactions. For an easier recovery, these reagents have been attached to Merrifield polymers and to dendrimers. Higher generations of dendrimers loaded with concave reagents will possess a golf ball geometry.  相似文献   

18.
Lu C  Xiao Q  Floreancig PE 《Organic letters》2010,12(22):5112-5115
Spirooxindole amides can be prepared by the intramolecular addition of functionalized indoles into acylimines that are accessed from nitriles by hydrozirconation and acylation. The stereochemical outcome at the quaternary center was controlled by the steric bulk of the substituent at the 2-position of the indole unit. The products are well-suited for diversification to prepare libraries.  相似文献   

19.
This paper presents some unusual types of reactions of lanthanocene amide complexes with ketenes, and demonstrates that these reactions are dependent on the nature of amide ligands and ketenes as well as the stoichiometric ratio under the conditions involved. The reaction of [{Cp(2)LnNiPr(2)}(2)] with four equivalents of Ph(2)CCO in toluene affords the unexpected enolization dearomatization products [Cp(2)Ln(OC{2,5-C(6)H(5)(==CPhCONiPr(2)-4)}==CPh(2))] (Ln = Yb (1 a), Er (1 b)) in good yields, representing an unprecedented conjugate electrophilic addition to a non-coordinated benzenoid nucleus. Treatment of [{Cp(2)LnNiPr(2)}(2)] with four equivalents of PhEtCCO under the same conditions gives the unexpected enolization dearomatization/rearomatization products [{Cp(2)Ln(OC{C(6)H(4)(p-CHEtCONiPr(2))}==CEtPh)}(2)] (Ln = Yb (2 a), Er (2 b), Dy (2 c)). However, reaction of [{Cp(2)YbNiPr(2)}(2)] with PhEtCCO in THF forms only the mono-insertion product [Cp(2)Yb{OC(NiPr(2))==CEtPh}](THF) (3). Hydrolysis of 2 afforded aryl ketone PhEtCHCOC(6)H(4)(p-CHEtCONiPr(2)) (4) and the overall formation of aryl ketone 4 provides an alternative route to the acylation of aromatic compounds. Moreover, reaction of [{Cp(2)LnNHPh}(2)] with excess of PhEtCCO or Ph(2)CCO in toluene affords only the products from a formal insertion of the C==C bond of the ketene into the N--H bond, [(Cp(2)Ln{OC(CHEtPh)NPh})(2)] (Ln = Yb (5 a), Y (5 b)) or [(Cp(2)Er{OC(CHPh(2))NPh})(2)] (6), respectively, indicating that an isomerization involving a 1,3-hydrogen shift occurs more easily than the conjugate electrophilic addition reaction, along with the initial amide attack on the ketene carbonyl carbon. [{Cp(2)ErNHEt}(2)] reacts with an excess of PhEtCCO to give [(Cp(2)Er{PhEtCHCON(Et)COCEtPh})(2)] (7), revealing another unique pattern of double-insertion of ketenes into the metal-ligand bond without bond formation between two ketene molecules. All complexes were characterized by elemental analysis and by their spectroscopic properties. The structures of complexes 1 b, 2 a, 2 b, 5 a, 5 b, 6, and 7 were also determined through X-ray single-crystal diffraction analysis.  相似文献   

20.
The [5+2] and [6+2] cycloaddition reactions of vinylaziridines and vinylazetidines with ketenes generated photochemically from chromium(0) and molybdenum(0) Fischer carbene complexes have been investigated. These processes constitute a straightforward and efficient route to azepanones and azocinones, respectively. The peculiar electronic properties of the metalated ketenes allow for the introduction of electron‐rich substituents in the final cycloadducts, a difficult task using conventional organic chemistry procedures. The versatility of the process is demonstrated by using Cr0 Fischer bis(carbene) complexes as metalated bis(ketene) precursors. These species produce tethered bis(azepanone)s in a single step under mild reaction conditions. Density functional theory calculations point to a stepwise reaction pathway through the initial nucleophilic attack of the nitrogen atom of the aziridine on the metalated ketene, followed by ring closure of the zwitterionic intermediate formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号