首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematical model to predict the maximum energy conversion efficiency of the thermoelectric generator is developed to improve the performance and maximize the energy conversion efficiency of the thermoelectric power generator. The studied device corresponds to an original configuration of thermoelectric modules mounted on the peripheral surfaces of two channels, one of the channels is crossed by hot fluid and the other by a cold fluid. First, the effect of the flow rate was studied to choose the flow rate adapted to our study for three different configurations of the thermopile, the co-current configuration, the counter-current configuration, and the sandwich configuration. Then a comparison was made to choose the best configuration between these three studied configurations by addressing their thermoelectric performances. The results revealed that the sandwich configuration is much better than the co-current and counter-current configurations and reduces the surface area occupied by the TEG by half while generating more power than a solar panel.  相似文献   

2.
结合太阳能电池温度特性和温差发电特点,设计了一套新的太阳能光伏发电-温差发电驱动的冰箱模型,该模型包括太阳能光伏电池、半导体温差发电模块、电源控制系统等.根据负载用电需求,做出了光伏发电系统的设计方案.采用热力学基本理论,对该模型进行了工作效率及 火 用 效率的分析.结果发现:能效比COP达到了2.73(一般 冰箱COP为2左右), 火 用 效率也达到42.5%.同时,该系统模型环境效益明显,可以减排CO2 1394.2 kg,SO2  相似文献   

3.
The results of calculating the characteristics of the heat-transfer process in thermoelectric cooling and temperature control are presented. The influence of the inhomogeneity of the heat flux and thermal contacts on the temperature increase of the heat-loaded element has been defined. The analysis of the cooling efficiency depending on the operating characteristics and the current strength of the power supply of thermoelectric modules, parameters of the heat-loaded element and the individual components of the system, and the conditions of the heat exchange with the external environment has been performed. It has been shown that, under certain conditions, the use of the thermoelectric modules cannot lead to a cooling of the element, but rather to heating. The possibility of optimizing the cooling to reduce the temperature of the heat-loaded element and power consumption of the thermoelectric module has been considered.  相似文献   

4.
Besides the material research in the field of thermoelectrics, the way from a material to a functional thermoelectric (TE) module comes alongside additional challenges. Thus, comprehension and optimization of the properties and the design of a TE module are important tasks. In this work, different geometry optimization strategies to reach maximum power output or maximum conversion efficiency are applied and the resulting performances of various modules and respective materials are analyzed. A Bi2Te3-based module, a half-Heusler-based module, and an oxide-based module are characterized via FEM simulations. By this, a deviation of optimum power output and optimum conversion efficiency in dependence of the diversity of thermoelectric materials is found. Additionally, for all modules, the respective fluxes of entropy and charge as well as the corresponding fluxes of thermal and electrical energy within the thermolegs are shown. The full understanding and enhancement of the performance of a TE module may be further improved.  相似文献   

5.
We discuss the influence of nanostructure geometry on the thermoelectric properties in quantum ring consists of one QD in each arm, each QD connects with side QD. The calculations are based on the time-dependent Hamiltonian model, the steady state is considered to obtain an analytical expression for the transmission probability as a function of system energies. We employed the transmission probability to calculate the thermoelectric properties. We investigate thermoelectric properties through three configurations of this nanostructure. Figure of merit enhanced in configuration (II) when side QD connected to upper arm of quantum ring. The magnetic flux threads quantum ring. The effect of magnetic flux on the thermoelectric properties is examined.  相似文献   

6.
Large and anomalous changes in the thermoelectric power of amorphous (a?) Ge films have been observed on doping with impurities of Al, Fe and Sb. Depending on the concentration, Al and Sb impurities contribute a negative thermoelectric power below 300°K. and a positive thermoelectric power above 300°K. The effect of Fe is very small below 1 at. %. The thermoelectric power attains high temperature-independent positive values for large (> 1 at. %) concentrations of Al. The observed effects of the impurities cannot be understood in terms of the conventional crystalline semiconductor concepts. A band structure model for a-Ge has been proposed to qualitatively understand the changes in the sign and magnitude of the thermoelectric power with temperature.  相似文献   

7.
In this paper we study the thermoelectric properties of n-and p-type PbTe theoretically in a wide temperature interval of 300 to 900 K. A three-band model of the PbTe electron-energy spectrum was used in these calculations for the first time. The full set of the relevant kinetic characteristics is calculated, including the electrical and thermal conductivities, as well as the Seebeck coefficient and the thermoelectric figure-of-merit. The calculated thermoelectric quantities are in good agreement with the available experimental data.  相似文献   

8.
In this work, we used the low temperature solution growth Successive Ionic Layer Adsorption and Reaction (SILAR) for a deposition of the nanostructured undoped and indium doped (ZnO and ZnO:In) thin films on flexible polyimide (PI) substrates for their use as cheap non-toxic thermoelectric materials in the flexible thermoelectric modules of planar type to power up portable and wearable electronics and miniature devices. The use of a zincate solution in the SILAR method allows to obtain ZnO:In film, which after post-growth annealing at 300 °C has low resistivity ρ ≈ 0.02 Ω m, and high Seebeck coefficient −147 μV/K and thermoelectric power factor ~1 μW K−2 m−1 at near-room temperatures. As evidence of the operability of the manufactured films as the basis of the TE device, we have designed and tested experimental lightweight thin-film thermoelectric module. This TE module is able to produce specific output power 0.8 μW/m2 at ΔT = 50 K.  相似文献   

9.
Strontium titanate(SrTiO_3) is a promising n-type material for thermoelectric applications. However, its relatively high thermal conductivity limits its performance in efficiently converting heat into electrical power through thermoelectric effect.This work shows that the thermal conductivity of SrTiO_3 can be effectively reduced by annealing treatments, through an integrated study of laser flash measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, x-ray absorption fine structure, and first-principles calculations. A phonon scattering model is proposed to explain the reduction of thermal conductivity after annealing. This work suggests a promising means to characterize and optimize the material for thermoelectric applications.  相似文献   

10.
Thermoelectric materials have attained importance because of the gargantuan energy crisis the world faces today. A thermoelectric material can be used efficiently and frequently, provided, its figure of merit ZT is increased. Also, easy availability, manufacturing, and low cost are the other factors to be considered for a novel thermoelectric material. A theoretical model is proposed in this paper for the enhancement of the figure of merit of thermoelectric materials.  相似文献   

11.
The high temperature behaviour of the thermoelectric transport coefficients for the Holstein small polaron model is investigated. An expression for the energy flux operator is derived, which includes the flow of the electron-lattice interaction energy. This inclusion is necessary for the small polaron model, because the electron-phonon coupling is assumed to be strong, while the kinetic energy of the electrons is understood as a small perturbation. Kubo formulae are used and approximated in lowest order perturbation theory. It follows that there are no dynamical corrections to the thermoelectric power. But the strong electron-lattice interaction leads to a contribution to the thermal conductivity.  相似文献   

12.
蒋俊  许高杰  崔平  陈立东 《物理学报》2006,55(9):4849-4853
采用区熔法结合放电等离子体快速烧结(SPS)技术制备了n型Bi2Te3基热电材料.在300—500K的温度范围内测量了各热电性能参数,包括电导率(σ)、塞贝克系数(α)和热导率(κ),研究了掺杂剂TeI4的含量(质量百分比分别为0,0.05,0.08,0.10,0.13和0.15wt%)对热电性能的影响.结果表明:试样的载流子浓度(n)随TeI4含量增加而增大,使电导率增大、塞贝克系数的绝对值先增大而后减小,从而导致品质因子(α2σ)呈先增加后降低的变化趋势;同时,由于异质离子(I-)以及载流子对声子的散射作用增强,可显著降低其晶格热导率.烧结材料的性能优值(ZT=α2σT/κ)对应于TeI4含量为0.08wt%有其最大值,约为0.92.此外,烧结材料的抗弯强度增加至80MPa左右,从而可以显著改善材料的可加工性以及元器件的使用可靠性. 关键词: 2Te3')" href="#">Bi2Te3 放电等离子体快速烧结 热电性能  相似文献   

13.
微热控百叶窗驱动器的分析与模拟   总被引:1,自引:0,他引:1  
提出一种适合微小卫星的微热控百叶窗驱动器,利用热电制冷片作为温控装置,利用高膨胀系数的金属作为活动部件,实现热控百叶窗的开合.建立了该驱动器的一维和二维物理数学模型,并利用有限元软件ANSYS对其工作过程进行了数值模拟.获得了其基本的性能特性.研究结果表明,与直接电加热双金属驱动元件相比,不同输入功率下,该新型驱动器的变形量分别为双金属的2.5~10倍,同时动作频率约为双金属的20倍左右.  相似文献   

14.
The electrical conductivity and thermoelectric power of AgTlSe2 have been investigated as a function of temperature from 390° C up to 590° C. The experimental data are analyzed in terms of a model developed for the density of states and electrical transport in solid amorphous semiconductors [12]. Positive thermoelectric power suggests a large predominance of holes in electrical conduction. It appears that the conduction is due to holes in localized states near the band edge.  相似文献   

15.
半导体温差发电过程的模型分析与数值仿真   总被引:5,自引:0,他引:5       下载免费PDF全文
王长宏  林涛  曾志环 《物理学报》2014,63(19):197201-197201
本文提出一种新型的半导体温差发电模型,在温差发电过程的数值模拟中考虑了热电单元之间封闭腔体内空气传热的影响.同时进一步运用有限元的数值计算方法对不同电臂对数和不同型号温差发电模型的温度场、电压场进行了数值仿真计算,并对仿真结果进行分析.结果表明:采用127对热电单元模型计算的能量转换效率随冷热端温差增大而迅速提高,与采用1对热电单元模型计算的能量转换效率之差从冷热端温差为20℃的0.39%提高到冷热端温差为220℃时的5.16%,能量转换效率比1对热电单元平均高出3.02%.冷端温度恒定在30℃时,温差发电芯片的输出电压、功率以及能量转换效率均随着电偶臂的横截面积的增大而提高,且电偶臂冷热两端的温差越大提高幅度也越大,而温差发电芯片内阻则与电偶臂横截面积成反比关系,当温差为220℃时对应的输出功率最高达28.9 W.  相似文献   

16.
Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the nanoscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a heterostructured semiconductor nanowire. We also show that a theoretical model based on the Master equations fully explains the observed nonlinear thermoelectric response given the energy-dependent transport properties of the quantum dot.  相似文献   

17.
为提升高热流密度下LED灯具的自然对流散热性能,以一款基于热电制冷(TEC)的单颗LED小型灯具模组为研究对象,在采用实验测量和回归拟合准确获得TEC性能参数的基础上,建立了有无TEC参与散热的等效热路模型,并选择合理的数学公式对其进行性能描述,进而遵循本文设计的计算流程快速得到各种散热性能数据。LED模组的散热分析表明:在恒定的LED热功率下,施加最佳的TEC电流可获得最高的散热性能;LED热功率越低,安装TEC的散热性能越比常规方法优异。经遗传算法优化前后的性能对比分析表明:优化后结构中TEC的合理工作区明显增大,能满足LED更高功率的散热需求;当LED为0.493 W时,优化后结构的最佳结温仅为15.66℃,远低于30℃的环境温度。基于TEC实验数据建立的等效热路模型,能为装配TEC的LED模组提供快速完整的散热设计分析与结构优化的合理方案。  相似文献   

18.
Thermoelectric devices have gained importance in recent years as viable solutions for applications such as spot cooling of electronic components, remote power generation in space stations and satellites etc. These solid-state devices have long been known for their reliability rather than their efficiency; they contain no moving parts, and their performance relies primarily on material selection, which has not generated many excellent candidates. Research in recent years has been focused on developing both thermoelectric structures and materials that have high efficiency. In general, thermoelectric research is two-pronged with (1) experiments focused on finding new materials and structures with enhanced thermoelectric performance and (2) analytical models that predict thermoelectric behavior to enable better design and optimization of materials and structures. While numerous reviews have discussed the importance of and dependence on materials for thermoelectric performance, an overview of how to predict the performance of various materials and structures based on fundamental quantities is lacking. In this paper we present a review of the theoretical models that were developed since thermoelectricity was first observed in 1821 by Seebeck and how these models have guided experimental material search for improved thermoelectric devices. A new quantum model is also presented, which provides opportunities for the optimization of nanoscale materials to enhance thermoelectric performance.  相似文献   

19.
The iron‐oxypnictide compounds, recently reported as a new class of superconductors when appropriately doped, exhibit large Seebeck coefficients, of the order of –100 µV/K, while keeping good electrical conductivity. Their power factor shows a peak at low temperatures, suggesting possible applications of these materials in thermoelectric cooling modules in the liquid nitrogen temperature range. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The rising interest in low temperature heat energy conversion encourages the application of thermoelectric devices. However, conventional thermoelectric devices used in the Seebeck mode as thermoelectric generators have several shortcomings and thus are inefficient when used as a generator. Additionally, the high cost–power ratio of these modules anticipates the commercial success on a broad basis. One way to achieve better suited products is provided by miniaturization of thermoelectric devices in order to enable the use of mass production methods. But in small devices the contact effects become dominant and reduce the efficiency and power density considerably. We show that using pn‐junctions with thermal generation of free carriers offers the possibility to achieve better contact properties and thus higher efficiencies and power densities.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号