首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this note we give a new, simple proof of the standard first and second order necessary conditions, under the Mangasarian–Fromovitz constraint qualification (MFCQ), for non-linear programming problems. We work under a mild constraint qualification, which is implied by MFCQ. This makes it possible to reduce the proof to the relatively easy case of inequality constraints only under MFCQ. This reduction makes use of relaxation of inequality constraints and it makes use of a penalty function. The new proof is based on the duality theorem for linear programming; the proofs in the literature are based on results of mathematical analysis. This paper completes the work in a recent note of Birbil et al. where a linear programming proof of the first order necessary conditions has been given, using relaxation of equality constraints.  相似文献   

2.
In recent years second-order sufficient conditions of an isolated local minimizer for convex composite optimization problems have been established. In this paper, second-order optimality conditions are obtained of aglobal minimizer for convex composite problems with a non-finite valued convex function and a twice strictly differentiable function by introducing a generalized representation condition. This result is applied to a minimization problem with a closed convex set constraint which is shown to satisfy the basic constraint qualification. In particular, second-order necessary and sufficient conditions of a solution for a variational inequality problem with convex composite inequality constraints are obtained. © 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.  相似文献   

3.
In this paper a minimization problem with convex objective function subject to a separable convex inequality constraint “≤” and bounded variables (box constraints) is considered. We propose an iterative algorithm for solving this problem based on line search and convergence of this algorithm is proved. At each iteration, a separable convex programming problem with the same constraint set is solved using Karush-Kuhn-Tucker conditions. Convex minimization problems subject to linear equality/ linear inequality “≥” constraint and bounds on the variables are also considered. Numerical illustration is included in support of theory.  相似文献   

4.
In this paper, the zero–one constrained extremum problem is reformulated as an equivalent smooth mathematical program with complementarity constraints (MPCC), and then as a smooth ordinary nonlinear programming problem with the help of the Fischer–Burmeister function. The augmented Lagrangian method is adopted to solve the resulting problem, during which the non-smoothness may be introduced as a consequence of the possible inequality constraints. This paper incorporates the aggregate constraint method to construct a uniform smooth approximation to the original constraint set, with approximation controlled by only one parameter. Convergence results are established, showing that under reasonable conditions the limit point of the sequence of stationary points generated by the algorithm is a strongly stationary point of the original problem and satisfies the second order necessary conditions of the original problem. Unlike other penalty type methods for MPCC, the proposed algorithm can guarantee that the limit point of the sequence is feasible to the original problem.  相似文献   

5.
First-order and second-order necessary conditions of optimality for an impulsive control problem that remain informative for abnormal control processes are presented and derived. One of the main features of these conditions is that no a priori normality assumptions are required. This feature follows from the fact that these conditions rely on an extremal principle which is proved for an abstract minimization problem with equality constraints, inequality constraints, and constraints given by an inclusion in a convex cone. Two simple examples illustrate the power of the main result.The first author was partially supported by the Russian Foundation for Basic Research Grant 02-01-00334. The second author was partially supported by the Russian Foundation for Basic Research Grant 00-01-00869. The third author was partially supported by Fundacao para a Ciencia e Tecnologia and by INVOTAN Grant.  相似文献   

6.
在经营管理、工程设计、科学研究、军事指挥等方面普遍存在着最优化问题,而实际问题中出现的绝大多数问题都被归纳为非线性规划问题之中。作为带等式、不等式约束的复杂事例,最优化问题的求解向来较为繁琐、困难。适当条件下,非线性互补函数(NCP)可以与约束优化问题相结合,其中NCP函数的无约束极小解对应原约束问题的解及其乘子。本文提出了一类新的NCP函数用于解决等式和不等式约束非线性规划问题,结合新的NCP函数构造了增广Lagrangian函数。在适当假设条件下,证明了增广Lagrangian函数与原问题的解之间的一一对应关系。同时构造了相应算法,并证明了该算法的收敛性和有效性。  相似文献   

7.
The Kuhn-Tucker Sufficiency Theorem states that a feasible point that satisfies the Kuhn-Tucker conditions is a global minimizer for a convex programming problem for which a local minimizer is global. In this paper, we present new Kuhn-Tucker sufficiency conditions for possibly multi-extremal nonconvex mathematical programming problems which may have many local minimizers that are not global. We derive the sufficiency conditions by first constructing weighted sum of square underestimators of the objective function and then by characterizing the global optimality of the underestimators. As a consequence, we derive easily verifiable Kuhn-Tucker sufficient conditions for general quadratic programming problems with equality and inequality constraints. Numerical examples are given to illustrate the significance of our criteria for multi-extremal problems.  相似文献   

8.
In this paper, some new results on the exact penalty function method are presented. Simple optimality characterizations are given for the differentiable nonconvex optimization problems with both inequality and equality constraints via exact penalty function method. The equivalence between sets of optimal solutions in the original mathematical programming problem and its associated exact penalized optimization problem is established under suitable invexity assumption. Furthermore, the equivalence between a saddle point in the invex mathematical programming problem and an optimal point in its exact penalized optimization problem is also proved.  相似文献   

9.
The abnormal minimization problem with a finite-dimensional image and geometric constraints is examined. In particular, inequality constraints are included. Second-order necessary conditions for this problem are established that strengthen previously known results.  相似文献   

10.
This paper surveys some basic properties of the class of generalized semi-infinite programming problems (GSIP) where the infinite index set of inequality constraints depends on the state variables and all emerging functions are assumed to be continuously differentiable. There exists a wide range of applications which can be modelled as a (GSIP). The paper discusses extensions of the Mangasarian-Fromovitz, Kuhn-Tucker and Abadie constraint qualification to (GSIP) and presents related first order optimality conditions of Fritz-John and Karush-Kuhn-Tucker type. By using directional differentiability properties of the optimal value function of the lower level problem, first and second order necessary and sufficient optimality conditions are discussed. Several examples illustrate the results presented. The work of this author was supported by CONACYT (México) under grant 44003.  相似文献   

11.
In this work, we study a nonsmooth optimization problem with generalized inequality constraints and an arbitrary set constraint. We present necessary conditions for a point to be a strict local minimizer of order k in terms of higher-order (upper and lower) Studniarski derivatives and the contingent cone to the constraint set. In the same line, when the initial space is finite dimensional, we develop sufficient optimality conditions. We also provide sufficient conditions for minimizers of order k using the lower Studniarski derivative of the Lagrangian function. Particular interest is put for minimizers of order two, using now a special second order derivative which leads to the Fréchet derivative in the differentiable case.  相似文献   

12.
Motivated by applications in economics and engineering, we consider the optimal control of a variational inequality with point evaluations of the state variable in the objective. This problem class constitutes a specific mathematical program with complementarity constraints (MPCC). In our context, the problem is posed in an adequate function space and the variational inequality involves second order linear elliptic partial differential operators. The necessary functional analytic framework complicates the derivation of stationarity conditions whereas the non-convex and non-differentiable nature of the problem challenges the design of an efficient solution algorithm. In this paper, we present a penalization and smoothing technique to derive first order type conditions related to C-stationarity in the associated Sobolev space setting. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
In this paper we present first and second order sufficient conditions for strict local minima of orders 1 and 2 to vector optimization problems with an arbitrary feasible set and a twice directionally differentiable objective function. With this aim, the notion of support function to a vector problem is introduced, in such a way that the scalar case and the multiobjective case, in particular, are contained. The obtained results extend the multiobjective ones to this case. Moreover, specializing to a feasible set defined by equality, inequality, and set constraints, first and second order sufficient conditions by means of Lagrange multiplier rules are established.  相似文献   

14.
This paper is concerned with the problem of characterizing a local minimum of a mathematical programming problem with equality and inequality constraints. The main object is to derive second-order conditions, involving the Hessians of the functions, or related results where some other curvature information is used. The necessary conditions are of the Fritz John type and do not require a constraint qualification. Both the necessary conditions and the sufficient conditions are given in equivalent pairs of primal and dual formulations.This research was partly supported by Project No. NR-947-021, ONR Contract No. N00014-75-0569, with the Center for Cybernetic Studies, and by the National Science Foundation, Grant No. NSF-ENG-76-10260.  相似文献   

15.
We consider an optimization reformulation approach for the generalized Nash equilibrium problem (GNEP) that uses the regularized gap function of a quasi-variational inequality (QVI). The regularized gap function for QVI is in general not differentiable, but only directionally differentiable. Moreover, a simple condition has yet to be established, under which any stationary point of the regularized gap function solves the QVI. We tackle these issues for the GNEP in which the shared constraints are given by linear equalities, while the individual constraints are given by convex inequalities. First, we formulate the minimization problem involving the regularized gap function and show the equivalence to GNEP. Next, we establish the differentiability of the regularized gap function and show that any stationary point of the minimization problem solves the original GNEP under some suitable assumptions. Then, by using a barrier technique, we propose an algorithm that sequentially solves minimization problems obtained from GNEPs with the shared equality constraints only. Further, we discuss the case of shared inequality constraints and present an algorithm that utilizes the transformation of the inequality constraints to equality constraints by means of slack variables. We present some results of numerical experiments to illustrate the proposed approach.  相似文献   

16.
In this paper, a new augmented Lagrangian function is introduced for solving nonlinear programming problems with inequality constraints. The relevant feature of the proposed approach is that, under suitable assumptions, it enables one to obtain the solution of the constrained problem by a single unconstrained minimization of a continuously differentiable function, so that standard unconstrained minimization techniques can be employed. Numerical examples are reported.  相似文献   

17.
We consider a class of mathematical programs governed by parameterized quasi-variational inequalities(QVI).The necessary optimality conditions for the optimization problem with QVI constraints are reformulated as a system of nonsmooth equations under the linear independence constraint qualification and the strict slackness condition.A set of second order sufficient conditions for the mathematical program with parameterized QVI constraints are proposed,which are demonstrated to be sufficient for the second o...  相似文献   

18.
In this note we give an elementary proof of the Fritz-John and Karush–Kuhn–Tucker conditions for nonlinear finite dimensional programming problems with equality and/or inequality constraints. The proof avoids the implicit function theorem usually applied when dealing with equality constraints and uses a generalization of Farkas lemma and the Bolzano-Weierstrass property for compact sets.  相似文献   

19.
Bounded knapsack sharing   总被引:1,自引:0,他引:1  
A bounded knapsack sharing problem is a maximin or minimax mathematical programming problem with one or more linear inequality constraints, an objective function composed of single variable continuous functions called tradeoff functions, and lower and upper bounds on the variables. A single constraint problem which can have negative or positive constraint coefficients and any type of continuous tradeoff functions (including multi-modal, multiple-valued and staircase functions) is considered first. Limiting conditions where the optimal value of a variable may be plus or minus infinity are explicitly considered. A preprocessor procedure to transform any single constraint problem to a finite form problem (an optimal feasible solution exists with finite variable values) is developed. Optimality conditions and three algorithms are then developed for the finite form problem. For piecewise linear tradeoff functions, the preprocessor and algorithms are polynomially bounded. The preprocessor is then modified to handle bounded knapsack sharing problems with multiple constraints. An optimality condition and algorithm is developed for the multiple constraint finite form problem. For multiple constraints, the time needed for the multiple constraint finite form algorithm is the time needed to solve a single constraint finite form problem multiplied by the number of constraints. Some multiple constraint problems cannot be transformed to multiple constraint finite form problems.  相似文献   

20.
In this paper we propose a recursive quadratic programming algorithm for nonlinear programming problems with inequality constraints that uses as merit function a differentiable exact penalty function. The algorithm incorporates an automatic adjustment rule for the selection of the penalty parameter and makes use of an Armijo-type line search procedure that avoids the need to evaluate second order derivatives of the problem functions. We prove that the algorithm possesses global and superlinear convergence properties. Numerical results are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号