首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significantly improved far-infrared laser has been used to generate optically pumped laser emissions from 26 to 150 μm for CD3OH. Using an XV-pumping geometry, several new laser emissions have been found for CD3OH. In addition, an increase in power, by factors from 10 to 1000, for many of the previously known shorter-wavelength laser lines, below 100 μm, has been observed. Frequency measurements for several lines have also been performed and have been reported to a fractional uncertainty up to ±2×10-7, permitting the spectroscopic assignment of the laser transition. One of the frequency-measured lines, 44.256 μm observed using the 10R34 pump, has confirmed the assignment of the previously reported FIR emission (n,K;J)=(1,7;20)?(0,8;20)A in the ground vibrational state. Received: 26 October 2000 / Published online: 7 February 2001  相似文献   

2.
The interaction of ultrashort laser pulses with solid state targets is studied concerning the production of short X-ray pulses with photon energies up to about 10 keV. The influence of various parameters such as pulse energy, repetition rate of the laser system, focusing conditions, the application of prepulses, and the chirp of the laser pulses on the efficiency of this highly nonlinear process is examined. In order to increase the X-ray flux, the laser pulse energy is increased by a 2nd multipass amplifier from 750 μJ to 5 mJ. By applying up to 4 mJ of the pulse energy a X-ray flux of 4×1010 Fe K α photons/s or 2.75×1010 Cu K α photons/s are generated. The energy conversion efficiency is therefore calculated to η Fe≈1.4×10−5 and η Cu≈1.0×10−5. The X-ray source size is determined to 15×25 μm2. By focusing the produced X-rays using a toroidally bent crystal a quasi-monochromatic X-ray point source with a diameter of 56 μm×70μm is produced containing ≈104 Fe K α1 photons/s which permits the investigation of lattice dynamics on a picosecond or even sub-picosecond time scale. The lattice movement of a GaAs(111) crystal is shown as a typical application.  相似文献   

3.
The results of the first experiments devised to investigate the mixing of thin layers of Al and Au during the laser acceleration of flat three-layer targets of Si (5 μm), Al (2 μm), and Au (0.05–0.26 μm) by radiation converted to the second harmonic from the Iskra-4 iodine laser with an intensity of 4×1013−7×1013 W/cm2 (τ 0.5∼1 ns), which acts on the Si side of the target. A method for detecting the occurrence of mixing is developed. It is established that under the experimental conditions the thickness of the mixing region is at least ∼0.15 μm. The results of a theoretical analysis of the evolution of the disturbances leading to mixing are presented. Zh. éksp. Teor. Fiz. 111, 882–888 (March 1997) Deceased.  相似文献   

4.
The spatial characteristic of an aluminum laser-induced plasma are studied at a laser radiation intensity of (3.8–4.8) × 108 W/cm2 and an air residual pressure of 6.7–133.3 Pa. It is found that the duration of the aluminum plasma glow is 50 μs and decreases with decreasing laser power output. The glow intensity reaches a maximum at t = 1.4 μs and rises with laser energy. Typical sizes of the emitting area on the laser torch are determined.  相似文献   

5.
The performance of a RF excited cw atomic xenon laser at wavelengths of 2.03 μm and 2.65 μm was studied theoretically and experimentally as a function of electrode distance. Results for inter-electrode distances from 2 to 0.25 mm are presented. A high pumping rate resulted in strong 40 mW cw amplified spontaneous emission at 2.65 μm wavelength from the configuration with the smallest distance of 0.25 mm between the electrodes. The maximum laser output of 2.7 W (0.24 W/cm3) was obtained with an active medium volume of 2×15×370 mm3 whereas the maximum specific output of 1.9 W/cm3 was received for an active medium volume of 0.25×2.25×370 mm3. A fluid model of the RF discharge was developed to analyze the laser behavior for different distances between the electrodes. Received: 30 November 1999 / Revised version: 21 April 2000 / Published online: 6 September 2000  相似文献   

6.
Micro/nano structures have been obtained by laser surface treatment on sintered LaB6 pellets employing a picosecond pulsed Nd:YAG laser at a pressure of ∼1×10−3 mbar. The X-ray diffraction pattern of the laser treated pellet shows a set of well defined diffraction peaks, indexed to the cubic phase of LaB6 only. The scanning electron microscope studies reveal formation of micro and nano structures upon laser treatment and the resultant surface morphology is found to be strongly influenced by the laser fluence. Field electron emission studies made on the LaB6 pellet, treated with optimized laser fluence, have been performed in a planar diode configuration under ultra high vacuum conditions. The threshold field required to draw an emission current density of ∼10 μA/cm2 has been found to be ∼2.3 V/μm and a current density of ∼530 μA/cm2 has been drawn at an applied field of 5.2 V/μm. The Fowler-Nordheim plot is found to be linear in accordance with the quantum mechanical tunneling phenomenon, confirming the metallic nature of the emitter. The emission current at the pre-set value ∼10 μA shows very good stability over a period of more than 3 hours. The present results emphasize the effectiveness of a picosecond laser treatment towards fabrication of a nano metric LaB6 emitter for high current density applications.  相似文献   

7.
Stabilization method of an infrared two-wavelength laser   总被引:1,自引:0,他引:1  
A simple method for stabilizing a He-Xe laser, which simultaneously operates at two wavelengths of 3.51 μm and 3.37 μm, is described. This stabilization method depends on the comparison of the light intensities of the two wavelengths, and has a possibility of realizing a stability of better than 1×10−8 with unmodulated output.  相似文献   

8.
Field emission studies of WO2.72 nanowires synthesized by a solvothermal method have been performed in the planar diode configuration under ultra high vacuum conditions. Fowler–Nordheim plots obtained from the current-voltage characteristics follow the quantum mechanical tunneling process and a current density of ∼8.3×106 μA/cm2 can be drawn at an applied electric field of 2 V/μm. The field enhancement factor is 33025, while the turn-on field is only 1.4 V/μm. The emission current-time plot recorded at the pre-set value of emission current of 1 μA over a period of more than 3 h exhibits an initial increase and a subsequent stabilization of the emission current. The results reveal that the WO2.72 nanowire emitters synthesized by the solvothermal method are promising cathode materials for practical applications.  相似文献   

9.
We present the first photoacoustic spectrometer for gas sensing employing both the fundamental and the frequency-doubled radiation of a continuously tunable high-pressure CO2 laser with room temperature operation. A quasi-phase-matched diffusion-bonded GaAs crystal is used in the system for second-harmonic generation. A pulsed photoacoustic detection scheme with a non-resonant cell, equipped with an 80-microphone array, is employed. The wide continuous tuning range in the fundamental (9.2–10.7 μm) and the frequency-doubled (4.6–5.35 μm) regimes, together with the narrow linewidth of 540 MHz (0.018 cm-1) for the 10-μm region and of 1050 MHz (0.0315 cm-1) for the 5-μm region, allow the measurement of gas mixtures, individual species and isotope discrimination. This is illustrated with measurements on NO and CO2. The measured isotope ratio 15 NO/14 NO=(3.58±0.55)×10-3 agrees well with the literature (3.700×10-3) and demonstrates the good selectivity of the system. Received: 30 April 2002 / Revised version: 10 June 2002 / Published online: 2 September 2002 RID="*" ID="*"Corresponding author. Fax: +41-1/633-1077, E-mail: sigrist@iqe.phys.ethz.ch  相似文献   

10.
Optical rectification in single crystals of tellurium produced by infra-red radiation at 10.6 μm has been observed. The value of |χ0 111| is found to be 0.9×10−6 esu. Preliminary experiments to test the usefulness of the effect to monitor mode-locked infra-red laser pulses have been inconclusive.  相似文献   

11.
Diamond nanocone, graphitic nanocone, and mixed diamond and graphitic nanocone films have been synthesized through plasma enhanced hot filament chemical vapor deposition (HFCVD). The field emission properties of these films have been experimentally investigated. The studies have revealed that all three kinds of nanocone films have excellent field electron emission (FEE) properties including low turn-on electric field and large emission current at low electric field. Compared with the diamond nanocone films (emission current of 86 μA at 26 V/μm with the turn-on field of 10 V/μm), the graphitic nanocone films exhibit higher FEE current of 1.8×102 μA at 13 V/μm and a lower turn-on filed of 4 V/μm. The mixed diamond and graphitic nanocone films have been found to posses FEE properties similar to graphitic nanocone films (emission current of 1.7×102 μA at 20 V/μm with the turn-on field of 5 V/μm), but have much better FEE stability than the graphitic nanocone films. PACS 81.07.Bc; 81.05.Uw; 79.70.+q  相似文献   

12.
The crystal of Nd3+:Sr6YSc(BO3)6 with dimensions of O 19×42 mm3 was grown by the Czochralski method. It’s spectral and laser properties have been investigated. The absorption cross section is 1.47×10-20 cm2 with a FWHM 12.0 nm at 807 nm, the emission cross section is 1.57×10-19 cm2 at 1060 nm, and the fluorescence lifetime is 76 μs at room temperature. The maximum laser output is 25.7 mJ at 1.06 μm pumped by a single Xenon flash lamp and the overall and average slope efficiencies are 0.12% and 0.09%, respectively. The laser energy threshold value is 1.28 J. PACS 42.55.Rz; 42.70.Hj; 78.20.-e  相似文献   

13.
The excitation mechanism of rare-earth ions in silicon nanocrystals   总被引:2,自引:0,他引:2  
A detailed investigation on the excitation mechanisms of rare-earth (RE) ions introduced in Si nanocrystals (nc) is reported. Silicon nanocrystals were produced by high-dose 80-keV Si implantation in thermally grown SiO2 followed by 1100 °C annealing for 1 h. Subsequently some of the samples were implanted by 300-keV Er, Yb, Nd, or Tm at doses in the range 2×1012–3×1015 /cm2. The energy was chosen in such a way to locate the RE ions at the same depth where nanocrystals are. Finally an annealing at 900 °C for 5 min was performed in order to eliminate the implantation damage. These samples show intense room-temperature luminescence due to internal 4f shell transitions within the RE ions. For instance, luminescence at 1.54 μm and 0.98 μm is observed in Er-doped nc, at 0.98 μm in Yb-doped nc, at 0.92 μm in nc and two lines at 0.78 μm and 1.65 μm in Tm-doped nc. Furthermore, these signals are much more intense than those observed when RE ions are introduced in pure SiO2 in the absence of nanocrystals, demonstrating the important role of nanocrystals in efficiently exciting the REs. It is shown that the intense nc-related luminescence at around 0.85 μm decreases with increasing RE concentration and the energy is preferentially transferred from excitons in the nc to the RE ions which, subsequently, emit radiatively. The exact mechanism of energy transfer has been studied in detail by excitation spectroscopy measurements and time-resolved photoluminescence. On the basis of the obtained results a plausible phenomenological model for the energy transfer mechanism emerges. The pumping laser generates excitons within the Si nanocrystals. Excitons confined in the nc can either give their energy to an intrinsic luminescent center emitting at around 0.85 μm nor pass this energy to the RE 4f shell, thus exciting the ion. The shape of the luminescence spectra suggests that excited rare-earth ions are not incorporated within the nanocrystals and the energy is transferred at a distance while they are embedded within SiO2. Rare-earth excitation can quantitatively be described by an effective cross section σeff taking into account all the intermediate steps leading to excitation. We have directly measured σeff for Er in Si nc obtaining a value of ≈2×10−17 cm2. This value is much higher than the cross section for excitation through direct photon absorption (8×10−21 cm2) demonstrating that this process is extremely efficient. Furthermore, the non-radiative decay processes typically limiting rare-earth luminescence in Si (namely back-transfer and Auger) are demonstrated to be absent in Si nc further improving the overall efficiency of the process. These data are reported and their implications. Received: 9 April 1999 / Accepted: 10 April 1999 / Published online: 2 June 1999  相似文献   

14.
Wu  C. T.  Ju  Y. L.  Yao  B. Q.  Ke  L.  Wang  Y. Z. 《Laser Physics》2011,21(2):356-361
Placing one 0.1 mm YAG F-P etalon at nearly Brewster angle and combined use 1 mm fused silica in the cavity, a diode-pumped linear-polarized single-longitudinal-mode (SLM) Tm:YAG laser operating at 2 μm is achieved. This paper is focused on the stability of the linear-polarized SLM laser, including power stability, long-term frequency stability and short-term frequency stability. And the factors affecting the frequency characteristics of laser were also analyzed. The instability of the linear-polarization SLM laser is less than 1%. The long-term frequency stability is in the range from 1.16 × 10−7 to 1.75 × 10−7 monitored by the wave meter. And the short-term frequency stability is 97 Hz/μs measured with the self-beating heterodyne detection method.  相似文献   

15.
Using three-dimensional test particle simulations, we investigated electrons accelerated by a focused flat-top laser beam at different intensities and flatness levels of the beam profile before focusing in vacuum. The results show that the presence of sidelobes around the main focal spot of the focused flat-top laser beam influences the optimum (as far as electron acceleration is concerned) initial momentum (and incident angle) of electrons for acceleration. The difference of initial conditions between laser beams with and without sidelobes becomes evident when the laser field is strong enough (a0>10, corresponding to intensities I>1×1020 W/cm2 for the laser wavelength λ=1 μm, where a0 is a dimensionless parameter measuring laser intensity). The difference becomes more pronounced at increasing a0. Because of the presence of sidelobes, there exist three typical CAS (capture and acceleration scenario) channels when a0≥30 (corresponding to I>1×1021 W/cm2 for λ=1 μm). The energy spread of the outgoing electrons is also discussed in detail. PACS 41.75.Jv; 42.60.Jf; 42.25.Fx  相似文献   

16.
We fabricate a transparent glass ceramic contains magnesium-aluminum spinel nanocrystallites doped with Co2+ ions. The ground-state and excited-state absorption cross section of this glass ceramic at 1.54 μm are estimated to be (2.8 ± 0.3) × 10−19 cm2 and (4.8 ± 0.5) × 10−20 cm2, respectively. For the first time, the passively Q-swithched operation of LD pumped 1.54 μm microchip Yb3+/Er3+ glass laser is realized with transparent glass ceramic as saturable absorber. The Q-switched pulses of 3.846 kHz in repetition rate, 6.2 ns in duration and 6.3 μJ in energy are obtained. At last, the dependences of pulse width and repetition rate on pump power are also investigated.  相似文献   

17.
4 I13/2 and 4I11/2 of erbium is measured in a fluorozirconate fiber in the wavelength range 780–840 nm. Using a pump- and probe-beam technique and choosing the pump wavelength such that the perturbation by pump ESA is minimized in the measurement, it is possible to determine the effective ESA cross sections, despite the fact that the excitation is distributed among two metastable levels. The derived ESA cross sections at 793 nm of 1.4×10-21 cm2 from the 4I13/2 level and less than 0.1×10-21 cm2 from the 4I11/2 level are in reasonable agreement with former results obtained from a rate-equation simulation of the erbium 3-μm laser. The corresponding ESA spectrum under 3-μm lasing conditions is derived. At the strongest ground-state absorption around 799 nm, decreasing ESA from the 4I13/2 level is compensated by increasing ESA from the 4I11/2 level, i.e., ESA losses cannot be avoided when pumping around 800 nm. This result is of relevance for possible high-power diode pumping of an erbium 3-μm double-clad fiber laser. Received: 20 January 1998  相似文献   

18.
A simple Dy3+-doped chalcogenide glass fibre laser design for mid-infrared light generation is studied using a one dimensional rate equation model. The fibre laser design employs the concept of cascade lasing. The results obtained demonstrate that efficient cascade lasing may be achieved in practice without the need for fibre grating fabrication, as a sufficient level of feedback for laser action is provided by Fresnel light reflection at chalcogenide glass fibre–air interfaces. Further enhancement of the laser efficiency can be achieved by terminating one of the fibre ends with a mirror. A numerical analysis of the effect of the Dy3+ doping concentration and fibre loss on the laser operation shows that with 5 W of pump power, at 1.71 μm wavelength, output powers above 100 mW at ∼ 4.5 μm wavelength can be achieved with Dy3+ ion concentrations as low as 3 × 1019 cm−3, when fibre loss is of the order 1dB/m.  相似文献   

19.
This article describes fabrication of Ag micropatterns on a flexible polyimide (PI) film by laser direct writing using an Ag nanoparticle-dispersed film as a precursor. Ag micropatterns are characterized by optical microscopy, atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), surface profilometry, and resistivity measurements. The line width of Ag micropatterns can be effectively controlled by altering the experimental parameters of laser direct writing especially laser intensity, objective lens, and laser beam scanning speed etc. Using an objective lens of 100× and laser intensity of 170.50 kW/cm2, Ag micropatterns with a line width of about 6 μm have been achieved. The Ag micropatterns show strong adhesion to polyimide surface as evaluated by Scotch-tape test. The resistivity of the Ag micropatterns is determined to be 4.1 × 10−6 Ω cm using two-point probe method. This value is comparable with the resistivity of bulk Ag (1.6 × 10−6 Ω cm).  相似文献   

20.
Two methods of preparation of the devices for visualization of pulsed and continuous near-IR (near infrared) are described and the results of conversion of pulsed and continuous IR (800–1360 nm) laser radiation into the visible range of spectra (400–680 nm) by using a transparent substrate covered with the particles (including nanoparticles) of effective nonlinear materials of GaSe x S1 − x (0.2 ≤ x ≤ 0.8) are presented. Converted light can be detected in transmission or reflection geometry as a visible spot corresponding to the real size of the incident laser beam. Developed device structures can be used for checking if the laser is working or not, for optical adjustment, for visualization of distribution of laser radiation over the cross of the beam and for investigation of the content of the laser radiation. Low energy (power density) limit for visualization of the IR laser pulses with 2–3 ps duration for these device structures are: between 4.6–2.1 μJ (3 × 10−4−1 × 10−4 W/cm2) at 1200 nm; between 8.4–2.6 μJ (4.7 × 10−4−1.5 × 10−4 W/cm2) at 1300 nm; between 14.4–8.1 μJ (8.2 × 10−4–4.6 × 10−4 W/cm2) at 1360 nm. Threshold damage density is more than 10 MW/cm2 at λ = 1060 nm, pulse duration τ = 35 ps. The results are compared with commercially existing laser light visualizators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号