共查询到20条相似文献,搜索用时 0 毫秒
1.
A molecular theory of liquid water is identified and studied on the basis of computer simulation of the TIP3P model of liquid water. This theory would be exact for models of liquid water in which the intermolecular interactions vanish outside a finite spatial range, and therefore provides a precise analysis tool for investigating the effects of longer-ranged intermolecular interactions. We show how local order can be introduced through quasichemical theory. Long-ranged interactions are characterized generally by a conditional distribution of binding energies, and this formulation is interpreted as a regularization of the primitive statistical thermodynamic problem. These binding-energy distributions for liquid water are observed to be unimodal. The Gaussian approximation proposed is remarkably successful in predicting the Gibbs free energy and the molar entropy of liquid water, as judged by comparison with numerically exact results. The remaining discrepancies are subtle quantitative problems that do have significant consequences for the thermodynamic properties that distinguish water from many other liquids. The basic subtlety of liquid water is found then in the competition of several effects which must be quantitatively balanced for realistic results. 相似文献
2.
Rolando Guidelli 《Journal of Electroanalytical Chemistry》1981,123(1):59-80
A statistical mechanical treatment of a monolayer consisting both of H-bonded solvent molecules adsorbed in an unspecified number of orientations and of polymeric molecules of a neutral solute is provided. The different size of solvent and solute molecules is accounted for using Flory—Huggins statistics, whereas local order within the monolayer is accounted for using the quasi-chemical approximation. The above treatment is applied to a hexagonal array of adsorbed water molecules oriented in such a way as to be in a condition to be singly or double H-bonded laterally in the monolayer; a further water orientation characterized by full alignment of the dipole moment in the direction away from the electrode and simulating chemisorbed water monomers is included in the molecular model treatment. An adsorption isotherm is derived upon generalizing the molecular model at hand so as to include the presence of polymeric neutral solute molecules adsorbed in a single orientation. The model accounts satisfactorily for a number of salient features of experimental capacity curves at metal—water interphases in the absence of adsorbed solute species, as well as for the adsorption behaviour of aliphatic compounds on mercury, provided that the doubly H-bonded water molecules are excluded from the molecular model. A justification for this exclusion, based on the existence of H-bonds between the first and second layer of water molecules, is provided. 相似文献
3.
The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface. 相似文献
4.
The reduction of Hg(II) at a glassy-carbon electrode in various electrolytes has been studied by rotating ring-disc voltammetry. Reduction proceeds directly to metallic mercury in a single 2-electron step. However, at the foot of the wave, and only during the first reduction sweep after pretreatment of the electrode surface, a small amount of Hg(I) species is detected at the ring. The appearance of an Hg(I) intermediate is most pronounced in sulphuric acid solution. The reduction of Hg(II) is found to proceed irreversibly and to be of first order. At sufficiently negative potentials the reduction is convective-diffusion controlled. Stripping voltammetric experiments indicate that the dissolution of mercury gives Hg(II) in complexing electrolytes. In non-complexing electrolytes the initially formed Hg(II) reacts with mercury atoms on the electrode surface to give Hg(I). During electrodissolution, two stripping peaks may be observed as a result of underpotential adsorption of mercury on glassy carbon. The difference in peak potential between the adsorption (mono) layer peak and the bulk mercury peak has been related to the difference in work functions of the deposit (mercury) and substrate (carbon). A rotating glassy-carbon electrode has been used for the anodic stripping determination of mercury. When an appropriate amount of a cation such as cadmium(II) or copper(II) is added to the test solution, mercury down to 2 x 10(-9)M (0.4 ng ml ) can be determined in acidified thiocyanate electrolyte with a relative standard deviation of about 22%. 相似文献
5.
《Journal of Electroanalytical Chemistry》1986,199(2):415-429
The adsorption of crotonaldehyde from aqueous 1 M KCl has been studied by means of differential capacity, zero charge potential and maximum surface tension measurements. The adsorption has been found to obey a Frumkin isotherm with the interaction parameter depending on the electric field. Different possible molecular orientations are suggested depending on charge and coverage. The contribution of the molecular dipole moment and differences in polarizability between the adsorbate and the solvent are considered. 相似文献
6.
The adsorption of tetramethylthiourea was studied by means of differential capacity measurements. Various parameters have been obtained by back-integration. The extent of orientation of the organic molecule has been estimated from the experimental adsorption potential shift by subtracting the contribution due to adsorbed water molecules calculated according to the Bockris-Habib model. Adsorption of tetramethylthiourea has been found to obey a Frumkin isotherm with the interaction parameter depending on the electric field. A scenario is proposed where different possible orientations are suggested, depending on charge sign and coverage. Such a change in orientation has been interpreted in terms of the electronic polarization effect. 相似文献
7.
Fameau AL Douliez JP Boué F Ott F Cousin F 《Journal of colloid and interface science》2011,362(2):397-405
The ethanolamine salt of 12-hydroxy stearic acid is known to form tubes having a temperature tunable diameter. Here, we study the behavior of those tubes at the air/water interface by using Neutron Reflectivity. We observed that tubes indeed adsorbed at this interface below a fatty acid monolayer and exhibit the same temperature behavior as in bulk. There is however a peculiar behavior at around 50 °C for which the increase of the diameter of the tubes at the interface yields an unfolding of those tubes into a multilamellar layer. Upon further heating, the tubes re-fold and their diameter re-decreases after which they melt into micelles as observed in the bulk. All structural transitions at the interface are nevertheless reversible. This provides to the system a high interest for its interfacial properties because the structure at the air/water interface can be tuned easily by the temperature. 相似文献
8.
9.
Fully atomistic simulations are used to characterize the molecular dynamics (MD) of acridine orange (3,6-dimethylaminoacridine) at a chromatographic interface. Multiple 1 ns MD simulations were performed for acridine orange at the interface between three different acetonitrile/water mixtures (0/100, 20/80, and 50/50) with C8 and C18 alkyl chains. The diffusion coefficient, D, of acridine orange in pure solvent was found to be 4 times smaller at the water/C18 interface (D = 0.022 x 10(-4) cm2/s) than in bulk water (D = 0.087 x 10(-4) cm2/s), in qualitative agreement with experiment. Rotational reorientation times were 20 and 700 ps, which also agree favorably with the measured time scales of 130 and 740 ps. Contrary to experiment, the simulations found that for increasing surface coverage, the diffusion coefficient for acridine decreased. Detailed analysis of the solvent structure showed that the transport properties of acridine were primarily governed by the solvent distribution above the functionalized surface. The solvent structure, in turn, was largely determined by the surface consisting of the silica layer, the alkyl chains, and their functionalization. 相似文献
10.
Pradines V Fainerman VB Aksenenko EV Krägel J Wüstneck R Miller R 《Langmuir : the ACS journal of surfaces and colloids》2011,27(3):965-971
Interfacial tension measurements have been performed at the water/hexane interface on mixtures of the bovine milk protein β-lactoglobulin and positively charged cationic surfactants (alkytrimethylammonium bromides). The addition of surfactants with different chain lengths leads to the formation of protein-surfactant complexes with different adsorption properties as compared to those of the single protein. In this study, the formation of complexes has been observed clearly for protein-long chain surfactant (TTAB and CTAB) mixtures, which has shown in addition to specific electrostatic interactions the relevance of hydrophobic interactions between surfactant molecules and the protein. The modeling of interfacial tension data by using a mixed adsorption model provides a quantitative understanding of the mixture behavior. Indeed, the value of the adsorption constant of the protein obtained in the presence of surfactants has strongly varied as compared to the single protein. Actually, this parameter which represents the affinity of the molecule for the interface is representative of the hydrophobic character of the compound and so of its surface activity. Even if a more hydrophobic and more surface active protein-surfactant complex has been formed, the replacement of this complex from the interface by surfactants close to their cmc was observed. 相似文献
11.
Varga I Mészáros R Stubenrauch C Gilányi T 《Journal of colloid and interface science》2012,379(1):78-83
The adsorption isotherms of n-decyl-β-D-glucoside (β-C(10)G(1)) as well as various n-alkyl-β-D-maltosides (β-C(n)G(2)) with n=8, 10, 12 and 14 were determined from surface tension measurements. Based on the analysis of the adsorption isotherms, the total free energy change of adsorption was determined and a novel method was proposed to determine the maximum adsorbed amount of surfactant. It can be concluded that the driving force for adsorption first increases with increasing adsorbed amount of the sugar surfactants and then levels off in a plateau. This peculiar behaviour is interpreted as formation of a thin liquid-like alkane film of overlapping alkyl chains at the air/water interface once a certain adsorbed amount is exceeded. The driving force of adsorption depends on the alkyl chain length only and is not affected by the type of the head group. The hydrophobic contribution to the standard free energy change of adsorption was compared with the values of sodium alkylsulfate and alkyltrimethylammonium bromide surfactants. This comparison reveals that the hydrophobic driving force of adsorption is the largest for the sodium alkylsulfates, whereas it is the same for the sugar surfactants and the alkyltrimethylammonium bromides. 相似文献
12.
《Colloids and surfaces. B, Biointerfaces》2010,75(2):492-497
Fats are widely present in a large variety of food and represent the main source of energy for the body. In the current study we investigate the behaviour of fatty acids at liquid–liquid interfaces, mimicking some steps of the very complex digestion process. Octanoic acid is used as an example of middle chain fatty acids. For the oil phase we choose sunflower oil as an industrial product and hexane as pure oil.The influence of the fatty acid concentration and the pH of the aqueous phase on the interfacial tension is determined by profile analyse tensiometry (PAT), which allows to examine the way of adsorption and transition of the fatty acids from one phase to the other. Predominantly, the pH affects the dissociation and thereby the strength of the hydrophilic character of the fatty acid. The adsorption behaviour indicates the different interfacial activity of the studied octanoic acid. 相似文献
13.
Masumi Villeneuve Mihoko Tanaka Mayuko Abe Hiroyasu Sakamoto Yoshiteru Hayami 《Colloid and polymer science》2014,292(9):2335-2348
A rigorous thermodynamic treatment appropriate for surface adsorption from mixed aqueous solution of alkali and polyprotic acid was derived. Those equations were applied to mixed aqueous solution/air systems of alkali metal hydroxide and FeIII complex with ethylenediamine- N, N, N′,N′-tetraacetate (Fe-EDTA). Surface density of each species arising from Fe-EDTA was separately evaluated, and thus, surface activity of Fe-EDTA was studied, especially its dependence on pH and how it is influenced by the counter cations. Fe-EDTA was positively adsorbed at the water/air interface at very low pHs and negatively at high pHs. The pH range of positive adsorption of Fe-EDTA with potassium ion, as a counter ion, was wider than that with sodium ion. Thus, potassium ion, a structure breaker, tended to smooth surface adsorption of Fe-EDTA at the water/air interface, whereas sodium ion, a structure maker, tended to withdraw Fe-EDTA from the interfacial region. 相似文献
14.
Ferrari M Ravera F Liggieri L Motschmann H Yi Z Krägel J Miller R 《Journal of colloid and interface science》2004,272(2):277-280
Adsorption layers of n-dodecanol at the water/air interface show phase transitions at low temperatures [Vollhardt, Fainerman, Emrich, J. Phys. Chem. B 104 (2000) 8536]. Using a drop shape technique it is shown that the dilational elasticity disappears in the coexistence region of the adsorption layer. The relaxation time between the condensed and liquid-like surface states is in the sub-second time range. 相似文献
15.
The adsorption isotherms of cetyltrimethylammonium ion (CTA+) together with that of the Br counterion on silica gel, and the effects of pH and added salts (NaF, NaCl and NaBr) have been systematically determined at 25°C. Electrophoretic mobilities of the silica gel particles have also been measured in the same conditions. The adsorption isotherm of CTA+ consists of four regions. Region I, at low concentrations of surfactant, the adsorption results primarily from electrostatic force between CTA+ and the negatively charged silica surface. Region II (first plateau), at medium concentrations, the adsorption is due to both the electrostatic force and the specific attraction (vdW forces) between CTA+ and the surface. Region III, characterized by an abrupt increase in the slope of the isotherm when the concentration reaches a particular point known as hemimicelle concentration (HMC). The abrupt increase in the adsorption is due to the hydrophobic interaction between hydrocarbon chains. Region IV (second plateau), at or above CMC, the limiting adsorption is reached as the micelle is not adsorbed. Based on this model, the experimental results can be explained reasonably. The results show that the HMC is about half of the CMC. According to the assumption that each adsorbed CTA+ ion in the first plateau is an active center for surface aggregation, the average aggregation number of hemimicelle have been calculated. 相似文献
16.
Joos P Tomoaia-Cotisel A Sellers AJ Tomoaia-Cotisel M 《Colloids and surfaces. B, Biointerfaces》2004,37(3-4):83-91
The kinetic analysis of the adsorption of two carotenoids (i.e., ethyl ester of β-apo-8′-carotenoic acid and β-carotene, all trans-isomers) from n-hexane solutions at the oil/water interface is presented for several carotenoid concentrations in the oil phase. A new kinetic approach is developed and it addresses the diffusion adsorption associated with a reversible interfacial reaction, which describes the reorientation of surfactant molecules between two conformations. This approach leads to a general analytical expression that contains four physical parameters and describes with high accuracy the experimental dynamic interfacial tensions for the two carotenoids, which independently adsorb from n-hexane phase to the n-hexane/water interface. The calculations give the characteristic times for the carotenoid adsorption at the oil/water interface in terms of diffusion relaxation and kinetic relaxation times. The results explain the long time effects on the adsorption of these carotenoids at the oil/water interface. The data are in substantial agreement with the molecular structure of these carotenoids and with the earlier data recorded for cholesterol adsorption at the n-heptane/water interface. Based on these findings, we propose a molecular mechanism for the interfacial transformation of carotenoid molecules at a hydrophobic/hydrophilic interface. 相似文献
17.
18.
The adsorption of amino acids onto mineral surfaces plays an important role in a wide range of areas, e.g., low-temperature aqueous geochemistry, bone formation and protein-bone interactions. In this work, the adsorption of three alpha aminoacids (sarcosine, MIDA and EDDA) onto goethite (alpha-FeOOH) was studied as a function of pH and background electrolyte concentration at 25.0 degrees C, and the molecular structures of the surface complexes formed were analyzed by means of ATR-FTIR spectroscopy. The results showed that adsorption of alpha amino acids were strongly dependent on the functionality and structure of the ligands. No adsorption was detected for the zwitterionic sarcosine indicating that simple alpha amino acids without other ionizable and/or functional groups display insignificant affinity for mineral surfaces such as goethite. With respect to the more complex amino acids, which are surface reactive, the number and relative positions of carboxylate and amine groups determine the types of surface interactions. These interactions range from non-specific outer-sphere to specific inner-sphere interactions as shown by the MIDA and EDDA results, respectively. The results presented herein suggest that isomerically-selective adsorption might only occur for amino acids that are capable of specific surface interactions, either through site-specific hydrogen bonding or inner-sphere complexation. 相似文献
19.
We applied total internal reflection fluorescence microscopy (TIRFM) to study intermolecular interactions at the water/fused-silica interface at the single-molecule level. Real-time molecular motion at the interface was recorded to reveal adsorption behavior and conformational dynamics of three DNAs with sticky ends of different numbers of unpaired bases. Features of DNA motion at the interface, such as evanescent-field residence time, linear velocity and frequency of adsorption/desorption events were measured to assess the relative affinities of the oligonucleotides for the surface. The general trend of stronger interaction with the surface for longer sticky ends confirmed hydrophobic interaction and hydrogen bonding as the driving forces of DNA adsorption to fused-silica at pH 5. For DNAs of different sizes, different conformational dynamics and the accessibility of sticky ends give rise to a nonlinear relationship with respect to affinity. Such information may prove valuable for chromatography studies as well as for the design of DNA microarrays and drug delivery systems. 相似文献
20.
Gilányi T Varga I Stubenrauch C Mészáros R 《Journal of colloid and interface science》2008,317(2):395-401
A number of features of the adsorption of alkyl trimethylammonium bromides with nc=10,12,14, and 16 at the air/water interface were studied. First, the adsorption isotherms were calculated from experimental surface tension vs concentration curves by means of the Gibbs equation. Second, a novel method was used to estimate the adsorption free energy change. From the analysis of these data it was concluded that the hydrophobic driving force for the adsorption first increases with increasing adsorbed amount and then levels off in a plateau, which holds true for all four homologues. This peculiar behavior was interpreted by the formation of a thin liquid-like alkane film at the air/water interface once a certain adsorbed amount is exceeded. The hydrophobic contribution to the standard free energy change of adsorption was compared with those values previously determined for alkyl sulfate homologues. This comparison suggests that the alkyl trimethylammonium type surfactants behave as if their alkyl chain was approximately one methylene group shorter than those of the corresponding alkyl sulfates. 相似文献