首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Microwave spectra of 2-propaneselenol and its deuterated species were measured and assigned for the gauche and trans isomers. The double minimum splittings of the gauche isomers were directly observed from b-type transitions, which were assigned with the aid of a double resonance technique. Rotational constants and torsional splitting of the gauche isomer of the parent species were determined to be A = 7802.50 ± 0.75, B = 2847.68 ± 0.04, C = 2242.03 ± 0.03, ΔA = ?2.52 ± 0.74, ΔB = 0.02 ± 0.05, ΔC = ?0.34 ± 0.03, and Δν = 368.91 ± 0.94 MHz, where ΔA, and ΔB, and ΔC are the differences of the rotational constants between the (+) and (?) states. From the torsional splittings and the energy differences of the two isomers of the parent and SeD species, Fourier coefficients of the selenol internal rotation potential function were determined to be V2 = ?88 ± 15, V3 = 1543 ± 29 cal/mole on the assumption of V1 = 0. Dipole moments and their components were also obtained for the two isomers.  相似文献   

2.
The microwave spectra of ethaneselenol and its deuterated and 13C-substituted species were measured and assigned for the gauche and trans isomers. The double minimum splittings in the gauche isomers were directly observed for the species having a symmetry plane in the frame part. The rotational constants and the torsional splitting of the gauche isomer of the parent species were determined to be A = 27 148.86 ± 0.05, B = 3 623.68 ± 0.01, C = 3 399.21 ± 0.03, and Δν = 1 083.33 ± 0.04 MHz. From the torsional splittings of the parent and SeD species together with the vibrational frequencies already reported by Durig and Bucy, the Fourier coefficients of the selenol internal rotation potential function were determined to be V1 = ?44 ± 17, V2 = ?260 ± 3, V3 = 1202 ± 16, and V6 = ?43 ± 9 cal/mole. From the rotational constants obtained, the rs structural parameters of the gauche and trans isomers were determined. The structural parameters in the skeletal part for the gauche isomer are r(CC) = 1.524 A?, r(CSe) = 1.957 A?, r(SeH) = 1.467 A?, α(CCSe) = 113°31′, α(CSeH) = 93°05′, and the dihedral angle τ(CCSeH) = 61°39′. Those for the trans isomer are r(CC) = 1.525 A?, r(CSe) = 1.962 A?, r(SeH) = 1.440 A?, α(CCSe) = 108°43′, and α(CSeH) = 93°30′. These parameters were compared with the corresponding ones of ethanethiol.  相似文献   

3.
The microwave spectrum of n-propyl isocyanide has revealed the existence of two rotational isomers, trans (methyl trans to the isocyanide substituent), and gauche. Plausible structures have been fitted to the data, giving the gauche dihedral angle as 119° ± 2° from the trans position. Stark effect measurements have yielded dipole moments for the two rotamers: μtrans = 4.16 ± 0.02 D and μgauche = 4.10 ± 0.09 D. The rotational constants of the trans form are A = 23 700 ± 100, B = 2407.632 ± 0.020, and C = 2278.853 ± 0.030 MHz, and those of the gauche form are A = 10 208.983 ± 0.030, B = 3479.219 ± 0.015, and C = 2859.981 ± 0.015 MHz. It has been found from relative intensity measurements that the gauche ground state is slightly more stable than the trans ground state, with an energy difference of 99 ± 45 cm?1. Several vibrationally excited states have been assigned to the torsional motion around the central carbon-carbon bond, the CNC bending motion, and the methyl internal rotation. The torsional vibration frequency is 114 ± 20 cm?1 in the trans form and 123 ± 20 cm?1 in the gauche form. A four-term potential function for internal rotation about the central CC bond has been determined.  相似文献   

4.
The molecular rotational spectrum of 1-iodopropane (n-propyl iodide) has been investigated in the frequency region 9–33 GHz. The 1-iodopropane molecule has been confirmed to exist in two rotational isomers, trans and gauche. The rotational constants of the ground state were determined to be A = 10 595.450(60) MHz, B = 1781.669(8) MHz, and C = 1614.200(7) MHz for gauche, and B = 1305.247(8) MHz and C = 1269.365(7) MHz for trans. The nuclear quadrupole coupling constants were determined to be χaa = −1020(3) MHz, χbb = 193(2) MHz, χcc = 827(4) MHz, χab = 1173(2) MHz, χac = −369(7) MHz, and χbc = 230(5) MHz for gauche, and χaa = −1509(8) MHz, χbb = 610(9) MHz, χcc = 899(12) MHz, and χab = −789(9) MHz for trans. The centrifugal distortion constants were also determined using all of the assigned transitions. From the relative intensity measurements the skeletal torsional frequencies for the gauche and trans forms were estimated to be 117 and 108 cm−1, respectively.  相似文献   

5.
The infrared, Raman, and microwave spectra of gaseous ethaneselenol have been investigated. The rotational constants for both the more stable gauche and for the trans conformers are reported for the Et78SeH, Et78SeD, Et80SeH, and Et80SeD isotopic species. A proposed structure has been derived from a least-squares analysis of the moments of inertia. Dipole moment components have been obtained from each conformer using second-order Stark effects. For the gauche conformer, they are μa = 1.42 ± 0.01, μc = 0.37 ± 0.03, and μtotal = 1.47 ± 0.01 D. For the trans isomer they are μa = 1.217 ± 0.002, μb = 0.850 ± 0.001, and μtotal = 1.485 ± 0.002 D. The methyl barrier to internal rotation was calculated using observed frequencies obtained from the infrared and Raman spectra; a value of 3.59 ± 0.01 kcal/mole was obtained. Asymmetric potential functions have been calculated for both the EtSeH and EtSeD isotopic species. For the light species the potential constants for internal rotation around the CSe bond are V2 = ?96.4 ± 1, V3 = 432 ± 4, and V6 = ?20 ± 2 cm?1. The difference between ground-state energy levels of the two conformers was found to be 66 cm?1. A vibrational assignment based on infrared and Raman spectra of the gaseous phase is presented.  相似文献   

6.
A microwave investigation of isopropyl mercaptan has established the existence of both trans and gauche conformers, the trans being more stable by 57 cal mole?1. Stark effect measurements give the dipole moments as 1.61 ± 0.2 D for the trans and 1.53 ± 0.2 D for the gauche species. The spectra of the isotopic species (CH3)2CH32SD, (CH3)2CH34SH, and (CH3)2CH34SD of the trans form have also been analyzed, providing a limited amount of structural data.The rotational spectrum of the gauche isomer is noticeably influenced by inversion. Interactions between energy levels in the two lowest inversion states have been satisfactorily accounted for in terms of rotational constants, coupling parameters (Ga and Gc), and ΔE0, the inversion level splitting. ΔE0 is found to be 562.4 MHz for the ground state of (CH3)2CHSH and 10.0 MHz for (CH3)2CHSD. A value of 1.98 kcal mole?1 has been calculated for the barrier to internal rotation of the -SH group in terms of a V3 potential.  相似文献   

7.
The microwave spectrum of the ground state of the normal species of gauche-ethylamine CH3CH2NH2 and that of -NHD, -NDH, as well as -ND2 isotopic species were measured and assigned. The ground state splits into four substates due to two internal large amplitude motions: inversion (s and a) and internal rotation (o and e) about the CN axis. Intersystem transitions due to tunneling as well as vibrational-rotational perturbations affect not only the absorption frequencies but also the Stark effect and NQHFS. The rotational constants for the two symmetrical inversion states (s) were fitted for the normal species as (all values in MHz) Ase = 32 423.470 ± 0.184, Bse = 8 942.086 ± 0.039, and Cse = 7 825.520 ± 0.048, and Aso = 32 378.733 ± 0.182, Bso = 8 940.906 ± 0.052, and Cso = 7 825.551 ± 0.042 with the interaction constants Qas = 151.12 ± 0.52 and Qbs = 44.4 ± 7.0. The antisymmetrical inversion states (a) were fitted as Aae = 32 423.347 ± 0.142, Bae = 8 942.027 ± 0.029, and Cae = 7 825.525 ± 0.031, and Aao = 32 378.720 ± 0.142, Bao = 8 940.984 ± 0.029, and Cao = 7 825.573 ± 0.031 with the interaction constants Qaa = 167.10 ± 0.31, Qba = 48.1 ± 5.4. The energy splitting due to intersion was determined (in MHz) as Δνinv = 1 391.39 ± 0.19 and that due to internal rotation as Δνtors = 1 170.58 ± 0.18. The cis barrier separating the two equivalent torsional states was calculated as 690 cm?1, and the inversion barrier between the inversion states was calculated as 1400 cm?1, both using the Dennison-Uhlenbeck model. A simple model explaining the inversion splittings of the monodeuterated species is proposed. Comparing the relative intensities for several temperatures the gauche form was observed to be energetically higher than the trans form by 110 ± 50 cm?1. The dipole moment could only be fitted by taking into account the internal motions yielding (in Debye) μaeff = 0.11 ± 0.01, μbeff = 0.65 ± 0.01, and μceff = 1.014 ± 0.015. The quadrupole coupling constants (in MHz) were found as χaa = ?χ+ = 2.268 ± 0.043 and χbb ? χcc = χ? = 3.120 ± 0.035.  相似文献   

8.
The microwave spectrum of 3-chloropyridine has been measured in the frequency region of 8.2 to 18 GHz. The rotational constants, centrifugal distortion constants, and the quadrupole coupling constants for the 35Cl species are A = 5839.448 ± 0.027 MHz, B = 1604.152 ± 0.005 MHz, C = 1258.327 ± 0.004 MHz, ΔJ = 0.10 ± 0.01 KHz, ΔJK = 0.36 ± 0.09 KHz, ΔK = 1.18 ± 0.07 KHz, δJ = ?0.008 ± 0.005 KHz, δK = 0.88 ± 0.20 KHz, χaa = ?70.04 ± 0.38 MHz, χbb = 36.68 ± 0.19 MHz. The values of rotational constants and quadrupole coupling constants for the 37Cl species are A = 5840.052 ± 0.034 MHz, B = 1559.354 ± 0.01 MHz, C = 1230.739 ± 0.016 MHz, χaa = ?54.20 ± 1.26 MHz, χbb = 29.49 ± 0.48 MHz. The double bond character in the CCl bond is found to be 2%. The smaller than expected value of rotational constant A points to a “fattening” of the pyridine ring about the a-axis in contrast to 2-chloropyridine, where no such substitution effect was observed.  相似文献   

9.
The microwave spectra of three isotopic species of methoxyamine (CH3ONH2) have been studied. For the normal species the ground-state rotational constants are A = 42488 ± 150 MHz, B = 10049.59 ± 0.03 MHz, and C = 8962.85 ± 0.03 MHz. From these data and those from the -NHD and -ND2 species, the amino protons have been shown to occupy a symmetrical trans position relative to the methyl group. The barrier to internal rotation of the methyl group has been found to be 873 ± 15 cm?1 by analysis of ground-state splittings. Analysis of hyperfine splittings has yielded the 14N quadrupole coupling constants, which have the following values for the normal isotopic species: χaa = 3.63 ± 0.03 MHz, χbb = ?3.69 ± 0.07 MHz, and χcc = 0.06 ± 0.07 MHz.  相似文献   

10.
Ab initio calculations are reported on the equilibrium geometries, dipole moments, rotational constants, and force constants of the isomers HOCN, HNCO, HCNO, and HONC. The most accurate calculations on the unknown isomer HOCN lead to a predicted geometry of ROH = 0.96 ± 0.005 A?,ROC = 1.302 ± 0.007 A?, RCN = 1.153 ± 0.007 A?, 〈HOC = 109 ± 1°, 〈OCN = 177 ± 1° in a planar trans conformation. This structure has rotational constants B = 10.64 ± 0.12 GHz and C = 10.47 ± 0.12 GHz, accurate enough to encourage a radio search for this species in dense interstellar clouds as well as experiments designed for terrestrial identification. In much less accurate calculations, not extensive enough to provide error bars, an approximate structure for the other unknown isomer, HONC, is RHO = 1.05 A?, RON = 1.14 A?, RNC = 1.26 A?, 〈HON = 109°, 〈ONC = 172.5°, in a planar trans conformation. The calculated structures of HNCO and HCNO are in good agreement with experiment. The nonlinearity of the heavy-atom axis is firmly established for HOCN, HNCO, and HONC. In all of the molecules the angle of the hydrogen-bending motion is strongly coupled to the angle formed by the heavy atoms. These hydrogen-bending motions are discussed in detail, especially the potential for inversion in HNCO and the quasi-linear potential in HCNO.  相似文献   

11.
The microwave spectrum of N-cyanopyrrolidine was observed and assigned in the ground and nine excited states. In the lowest two states, split 3.9 cm?1 by a ring-puckering, nitrogen-inversion motion, the rotational constants are (for v = 0) A = 6585.05 ± 3.83, B = 1919.54 ± 0.05, C = 1583.84 ± 0.05, and (for v = 1) A = 6575.31 ± 6.01, B = 1922.37 ± 0.08, C = 1586.44 ± 0.08 MHz. Deviations from rigid rotor behavior in the lowest two states were described and analyzed by inclusion of a Hamiltonian term coupling the states via the internal vibrational angular momentum. The observed conformation of the five-membered ring system was found to be the envelope equatorial form. The tunneling motion which interconverts equivalent conformers has been discussed, and the qualitative nature of the potential energy surface has been described and compared to the parent unsubstituted molecule.  相似文献   

12.
Microwave spectra were observed and analyzed for 2-aminoethanethiol and 2-chloroethanethiol. The amino compound exists in two gauche rotameric conformations, one exhibiting an intramolecular SH?N hydrogen bond. The hydrogen-bonded conformer lies higher in energy by 274 ± 90 cal mole?1 and has the following rotational constants (in MHz): A = 12 040.1 ± 11.3, B = 3352.24 ± 0.03, and C = 2881.99 ± 0.03. For the non-hydrogen-bonded conformer the rotational constants (in MHz) are A = 11 929.9 ± 10.2, B = 3395.01 ± 0.03, and C = 2877.82 ± 0.03. Dipole moment measurements for the H-bond conformer led to μa = 2.68 D, μb = 0.88 D, and μc = 0.37 D, while for the non-H-bond form the values are μa = 1.51 D, μb = 0.0 D, and μc = 0.62 D. In the case of chloroethanethiol, the only assigned spectral lines were the unresolved JJ + 1 a-type bands of a trans conformation. For this molecule the combination rotational constant B + C has the value 2955.17 ± 0.02 MHz for the 35Cl species and 2879.73 ± 0.02 MHz for the 37Cl species.  相似文献   

13.
The analysis of the microwave spectrum of 3,3-difluoropropene has confirmed the existence of two rotational isomers, cis and gauche. The rotational constants in the ground vibrational state are A = 9126.08 MHz, B = 3722.120 MHz, and C = 2946.598 MHz for the cis form and A = 8901.64 MHz, B = 4192.759 MHz, and C = 3107.718 MHz for the gauche form. The dipole moment and its components along the principal axes of intertia are μa = 2.369 ± 0.015 D, μc = 0.70 ± 0.03 D, and μt = 2.47 ± 0.03 D for the cis form and μa = 1.535 ± 0.015 D, μb = 0.53 ± 0.04 D, μc = 1.36 ± 0.03 D, and μt = 2.12 ± 0.05 D for the gauche form. The relative intensity measurement indicates that the cis form is more stable than the gauche form by 260 ± 80 cm?1. The energy of the first excited state with respect to the ground state was found to be 63 ± 8 cm?1 for the cis form and 85 ± 10 cm?1 for the gauche form. Two Fourier coefficients of the potential function restricting the torsion around the CC bond were determined to be V1 = 266 ± 40 cm?1 and V3 = 508 ± 200 cm?1, using the available data. The potential function thus obtained is compared to a prediction model which is derived assuming additivity of the potential as a function of substitution.  相似文献   

14.
The microwave spectrum has been observed and analyzed for five isotopic species of N-methylhydroxylamine. For the normal species the rotational constants (in Megahertz) are A = 38 930.771 ± 0.005, B = 3939.607 ± 0.002, and C = 8690.716 ± 0.001. These data show that the molecule exists in the trans conformation, with structural parameters that include the following: CN = 1.460, NO = 1.461, NH = 1.007, and OH = 0.962. Hyperfine structure analyses have yielded the complete inertial axis 14N quadrupole coupling constant tensor, and thus the tensor values in the electric field-gradient principal axis system as follows: χxx = 4.41 ± 0.30, χyy = 1.93 ± 0.45, and χzz = ?6.34 ± 0.30 MHz. The total electric dipole moment has been found to have the value μT = 0.71 D, and the barrier to internal rotation of the methyl group is 3.55 kcal/mole.  相似文献   

15.
The microwave spectrum of boron chloride difluoride, BClF2, has been investigated in the region 26.5–40.0 GHz. R-branch transitions belonging to the isotopic species 11B35Cl19F2, 11B37Cl19F2, and 10B35Cl19F2 have been observed and the derived rotational constants yield the following ground-state structural parameters: r0(BF) = 1.315 ± 0.006 A?, rs(BCl) = 1.728 ± 0.009 A?, < FBF = 118.1 ± 0.5°. The ground-state rotational constants of the most abundant species 11B35Cl19F2 are: A0 = 10 449.32 ± 0.13, B0 = 4705.811 ± 0.020, C0 = 3239.702 ± 0.026 MHz, ΔJK = 8.9 ± 1.7, and ΔJ = 1.86 ± 0.48 KHz. The asymmetry parameter κ = ?0.593291 and the inertial defect δ0 = 0.2361 amu Å2 which is consistent with that expected for this type of molecule if planar. The 35Cl quadrupole coupling constants for 11B35Cl19F2 are χaa = ?42.8 ± 1.0, χbb = 30.2 ± 1.5, χcc = 12.6 ± 1.5 MHz with the asymmetry parameter η = 0.41.  相似文献   

16.
The microwave rotational spectrum of the unstable species thioacetaldehyde, CH3CHS, has been studied in a flow pyrolysis system. Eight isotopic variants have been studied allowing an accurate substitution structure to be derived. Most of the spectral lines show splittings due to internal rotation, analysis of which has allowed a barrier study to be made. For the torsional ground state of the most abundant species, V3 = 1572 ± 30 cal/mole or 375.7 ± 7 J/mole. The dipole moment is μ = 2.33 ± 0.02 D with components μA = 2.26 ± 0.02 and μB = 0.56 ± 0.01 D.  相似文献   

17.
The microwave spectrum of bromomethyl oxirane
has been recorded in the range 12.5–18 and 26.5–40 GHz. Lines of the two bromine isotopic species of three rotamers, gauche-1 (Br near the O atom), gauche-2 (Br near the CH2 of the ring) and cis have been identified. The gauche-1 lines are strongest, and the cis lines the weakest. The rotational constants (in MHz) are: gauche-1 (79Br) A = 12 296.050, B = 1 391.677, C = 1 317.360, (81Br) A = 12 199.162, B = 1 378.321, C = 1 309.142; gauche-2 (79Br) A = 12 278.436, B = 1 378.830, C = 1 304.852, (81Br) A = 12 189.869, B = 1 369.696, C = 1 301.584; cis (79Br) A = 7 733.314, B = 1 808.087, C = 1 737.340, (81Br) A = 7 726.16, B = 1 801.159, C = 1 730.125.  相似文献   

18.
The microwave and photoelectron spectra of isocyanato ethene CH2CHNCO have been studied. The microwave results indicate that the species is planar and possesses both a cis and a trans form. The appearance of dense and complicated vibrational satellite lines indicates that the molecule is quite flexible, a general property of molecules containing the isocyanate group. The rotational constants are:
cis: A0 = 20 146.8, B0 = 3107.267, C0 = 2689.513 MHz; trans: A0 = 62 584.051, B0 = 2437.730, C0 = 2346.507 MHz
These constants are shown to be consistent with structures in which r(CN) = 1.382 ± 0.005 A?, ∠(CCN) = 122 ± 1° (for both conformers), and ∠(CNC) = 142.4 ± 0.5° (cis) and 138.4 ± 1.5° (trans). The dipole moments are μ(cis) = 2.120 ± 0.015 and μ(trans) = 2.207 ± 0.007 D. Several distinct peaks are observed in the photoelectron spectrum; however, the structure is not resolved into features belonging to the different isomers. The first ionization potential lies at 9.80 ± 0.1 eV. The spectrum has been assigned with the aid of theoretical calculations.  相似文献   

19.
The microwave spectrum of 35Cl and 37Cl species of chloroiodomethane was investigated in the frequency region of 9–35 GHz. The b-type R-branch and Q-branch transitions were assigned. The rotational constants of the ground state were determined to be A = 27 418.81 ± 0.10, B = 1621.879 ± 0.024, and C = 1545.730 ± 0.044 MHz for the 35Cl species; and A = 27 261.46 ± 0.16, B = 1562.240 ± 0.047, and C = 1491.008 ± 0.092 MHz for the 37Cl species. From the hyperfine splitting of the I, 35Cl, and 37Cl nuclei, the nuclear quadrupole coupling constants were determined to be χaa = −1404.5 ± 3.8, χbb = 383.4 ± 2.1, χcc = 1021.1 ± 4.3, and ∥χab∥ = 1176.5 ± 3.6 MHz of iodine; χaa = −26.8 ± 2.3, χbb = −11.0 ± 1.2, and χcc = 37.8 ± 2.6 MHz of 35Cl for the 35Cl species; χaa = −1423.2 ± 5.5, χbb = 389.1 ± 2.9, χcc = 1034.1 ± 6.2, and ∥χab∥ = 1170.2 ± 6.9 MHz of iodine; and χaa = −20.4 ± 3.3, χbb = −9.1 ± 1.8, and χcc = 29.5 ± 3.7 MHz of 37Cl for the 37Cl species, respectively. The centrifugal distortion constants were also determined using all of the assigned transitions. A brief discussion of the procedure for analyzing the quadrupole hyperfine structures of a molecule containing two quadrupolar nuclei is also provided.  相似文献   

20.
The microwave spectra of two conformations of chloromethyl oxirane (CH2OCHCH235Cl, epichlorohydrin) is reported. In the gauche-2 form the chlorine is situated trans to the oxygen, in the cis form the chlorine is cis to the ring. The rotational constants in megahertz are gauche-2; A = 12 739.35, B = 2066.83, C = 1881.49, and cis; A = 8378.66, B = 2840.67, C = 2510.55.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号