首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We use experiments, numerical simulations, and theoretical analysis to investigate the propagation of highly nonlinear solitary waves in periodic arrangements of dimer (two-mass) and trimer (three-mass) cell structures in one-dimensional granular lattices. To vary the composition of the fundamental periodic units in the granular chains, we utilize beads of different materials (stainless steel, brass, glass, nylon, polytetrafluoroethylene, and rubber). This selection allows us to tailor the response of the system based on the masses, Poisson ratios, and elastic moduli of the components. For example, we examine dimer configurations with two types of heavy particles, two types of light particles, and alternating light and heavy particles. Employing a model with Hertzian interactions between adjacent beads, we find good agreement between experiments and numerical simulations. We also find good agreement between these results and a theoretical analysis of the model in the long-wavelength regime that we derive for heterogeneous environments (dimer chains) and general bead interactions. Our analysis encompasses previously-studied examples as special cases and also provides key insights on the influence of heterogeneous lattices on the properties (width and propagation speed) of the nonlinear wave solutions of this system.  相似文献   

2.
Solitary waves are lumps of energy. We consider the study of dynamical solitary waves, meaning cases where the energy lumps are moving, as opposed to topological solitary waves where the lumps may be static. Solitary waves have been studied in some form or the other for nearly 450 years. Subsequently, there have been many authoritative works on solitary waves. Nevertheless, some of the most recent studies reveal that these peculiar objects are far more complex than what we might have given them credit for. In this review, we introduce the physics of solitary waves in alignments of elastic beads, such as glass beads or stainless steel beads. We show that any impulse propagates as a new kind of highly interactive solitary wave through such an alignment and that the existence of these waves seems to present a need to re-examine the very definition of the concept of equilibrium. We further discuss the possibility of exploiting nonlinear properties of granular alignments to develop exciting technological applications.  相似文献   

3.
Recent studies have pointed out the importance of the basal friction on the dynamics of granular flows. We present experimental results on the influence of the roughness of the inclined plane on the dynamics of a monodisperse dry granular flow. We found experimentally that there exists a maximum of the friction for a given relative roughness. This maximum is shown to be independent of the slope angle. This behavior is observed for four planes with different bump sizes (given by the size of the beads glued on the plane) from 200 m to 2 mm. The relative roughness corresponding to the maximum of the friction can be predicted with a geometrical model of stability of one single bead on the plane. The main parameters are the size of the bumps and the size of the flowing beads. In order to obtain a higher precision, the model also takes into account the spacing between the bumps of the rough plane. Experimental results and model are in good agreement for all the planes we studied. Other parameters, like the sphericity of the beads, or irregularities in the thickness of the layer of glued particles, are shown to be of influence on the friction.  相似文献   

4.
We investigate the formation and dynamics of sand ripples under a turbulent water flow. Our experiments were conducted in an open flume with spherical glass beads between 100 and 500μm in diameter. The flow Reynolds number is of the order of 10 000 and the particle Reynolds number of the order of 1 to 10. We study the development of ripples by measuring their wavelength and amplitude in course of time and investigate the influence of the grain size and the flow properties. In particular, we demonstrate two different regimes according to the grain size. For fine grains, a slow coarsening process (i.e., a logarithmic increase of the wavelength and amplitude) takes place, while for coarser grains, this process occurs at a much faster rate (i.e., with a linear growth) and stops after a finite time. In the later case, a stable pattern is eventually observed. Besides, we carefully analyze the wavelength of ripples in the first stages of the instability as a function of the grain size and the shear velocity of the flow, and compare our results with other available experimental data and with theoretical predictions based on linear stability analyses.  相似文献   

5.
We study the shearing of polydisperse and bidisperse media with a size ratio of 10. Simulations are performed with a two-dimensional shear cell using contact dynamics. With a truncated power law for the polydisperse media we find that they show a stronger dilatancy and greater resistance to shearing than bidisperse mixtures. To model additives used to control viscosity we introduce so-called “point-like particles”. Even changing the kinematic behavior very little, the point-like particles reduce the force necessary to maintain a fixed shearing velocity.  相似文献   

6.
We present extensive computational results for the effective temperature, defined by the fluctuation-dissipation relation between the mean square displacement and the average displacement of grains, under the action of a weak, external perturbation, of a sheared, bi-disperse granular packing of compressible spheres. We study the dependence of this parameter on the shear rate and volume fractions, the type of particle and the observable in the fluctuation-dissipation relation. We find the same temperature for different tracer particles in the system. The temperature becomes independent on the shear rate for slow enough shear suggesting that it is the effective temperature of the jammed packing. However, we also show that the agreement of the effective temperature for different observables is only approximate, for very long times, suggesting that this defintion may not capture the full thermodynamics of the system. On the other hand, we find good agreement between the dynamical effective temperature and a compactivity calculated assuming that all jammed states are equiprobable. Therefore, this definition of temperature may capture an instance of the ergodic hypothesis for granular materials as proposed by theoretical formalisms for jamming. Finally, our simulations indicate that the average shear stress and apparent shear viscosity follow the usual relation with the shear rate for complex fluids. Our results show that the application of shear induces jamming in packings whose particles interact by tangential forces.  相似文献   

7.
Stability limit of a granular monolayer   总被引:3,自引:0,他引:3  
A granular monolayer is composed by spherical grains on a horizontal plate. The plate is then tilted until the monolayer breaks down. This critical angle has been measured for different widths and heights of the rectangular monolayer. The highest critical angles are found when one of these two characteristic lengths is less than about 30 bead diameters. When the polydispersity is less than one percent, the monolayer may be stable till angles close to 90°. Arches induce large critical angles. On the other hand, for a large and high monolayer, the critical angle saturates towards a lower value. This angle is related to the static friction of a grain on the plate. A model based on the block dynamics is proposed to describe the behavior of the avalanche angle as a function of the size of the monolayer and the polydispersity of the beads.-1  相似文献   

8.
A novel approach is presented for nanohole 3D-size tailoring. The process starts with a monolayer of polystyrene (PS) beads spun coat on silicon wafer as a template. The holes can be directly prepared through combustion of PS beads by oxygen plasma during metal or oxide thin film deposition. The incoming particles are prevented from adhering on PS beads by H2O and CO2 generated from the combustion of the PS beads. The hole depth generally depends on the film thickness. The hole diameter can be tailored by the PS bead size, film deposition rate, and also the combustion speed of the PS beads. In this work, a series of holes with depth of 4-24 nm and diameter of 10-36 nm has been successfully prepared. The hole wall materials can be selected from metals such as Au or Pt and oxides such as SiO2 or Al2O3. These templates could be suitable for the preparation and characterization of novel nanodevices based on single quantum dots or single molecules, and could be extended to the studies of a wide range of coating materials and substrates with controlled hole depth and diameters.  相似文献   

9.
We performed numerical simulations of one-bead collision on the surface of a static granular medium. The simulations have been done for two- and three-dimensional packings of beads. The effect of the incident bead velocity, the shot angle, the mechanical parameters and the packing structure are analyzed for ordered and disordered 2D packings and only disordered 3D packings. The 2D results are in good agreement with experimental available data. The 3D simulations give good preliminaries results about the shock-wave propagation through the stacking and provides new insights in the ejection process (“splash function”).  相似文献   

10.
We investigate the physical meaning of coarse-grained beads generated by coarse graining of nonbonded particles such as solvent molecules in a solution. Starting from the partition function, we analytically coarse grain an N-particle fluid to a system containing N-2 of the original particles plus a bead representing the two remaining particles. As a direct consequence of the lack of bonding interactions, the resulting effective potential becomes independent of the bead coordinates, i.e., ideal-gas-like, in the thermodynamic limit. Thus, there are no conservative forces between coarse-grained beads representing assemblies of nonbonded molecules nor between these beads and any other species in the system.  相似文献   

11.
We present the apparent mass measurements at the bottom of granular packings for different bead and silo sizes. The redirection parameter K in Janssen theory is found to increase with the ratios of the diameter of the silo to the bead. We attribute this feature to the friction between the beads and the confining wall of silo; it is the role of friction that leads to variations in the shielding of vertical stresses as well as pressure screening.  相似文献   

12.
Colloidal particles coated by polyelectrolyte multilayers of alternatingly positive and negative charge are shown to interact strongly with lipid vesicles. We have studied two cases: (i) the interaction between beads and small unilamellar vesicles (vesicles diameter smaller than the particles one), where we found evidence for coating of the beads with lipid bi- or multilayers in the form of an increase in bead diameter and changes in the beads surface potential; (ii) the interaction of beads with giant vesicles (vesicles larger than the particles), where we observed by fluorescence microscopy the spreading of the vesicle on the bead manipulated with an optical tweezer. Giant fluctuations of the vesicles are suppressed due to the adhesion of the vesicle to the bead and direct observation of the coating process shows that lipid coverage is not limited to the direct vesicle-bead contact area, but is rather extended to the entire bead. To cite this article: A. Fery et al., C. R. Physique 4 (2003).  相似文献   

13.
We present experiments on a monolayer of air-fluidized beads in which a jamming transition is approached by increasing pressure, increasing packing fraction, and decreasing kinetic energy. This is accomplished, along with a noninvasive measurement of pressure, by tilting the system and examining behavior versus depth. We construct an equation of state and analyze relaxation time versus effective temperature. By making time and effective temperature dimensionless using factors of pressure, bead size, and bead mass, we obtain a good collapse of the data but to a functional form that differs from that of thermal hard-sphere systems. The relaxation time appears to diverge only as the effective temperature to pressure ratio goes to zero.  相似文献   

14.
Cemented granular materials (CGMs) consist of densely packed solid particles and a pore-filling solid matrix sticking to the particles. We use a sub-particle lattice discretization method to investigate the particle-scale origins of strength and failure properties of CGMs. We show that jamming of the particles leads to highly inhomogeneous stress fields. The stress probability density functions are increasingly wider for a decreasing matrix volume fraction, the stresses being more and more concentrated in the interparticle contact zones with an exponential distribution as in cohesionless granular media. Under uniaxial loading, pronounced asymmetry can occur between tension and compression both in strength and in the initial stiffness as a result of the presence of bare contacts (with no matrix interposed) between the particles. Damage growth is analyzed by considering the evolution of stiffness degradation and the number of broken bonds in the particle phase. A brutal degradation appears in tension as a consequence of brittle fracture in contrast to the more progressive nature of damage growth in compression. We also carry out a detailed parametric study in order to assess the combined influence of the matrix volume fraction and particle-matrix adherence. Three regimes of crack propagation can be distinguished corresponding to no particle damage, particle abrasion and particle fragmentation, respectively. We find that particle damage scales well with the relative toughness of the particle-matrix interface with respect to the particle toughness. This relative toughness is a function of both matrix volume fraction and particle-matrix adherence and it appears therefore to be the unique control parameter governing transition from soft to hard behavior.  相似文献   

15.
We numerically investigate the problem of the propagation of a shock in an horizontal non-loaded granular chain with a bead interaction force exponent varying from unity to large values. When is close to unity we observed a cross-over between a nonlinearity-dominated regime and a solitonic one, the latest being the final steady state of the propagating wave. In the case of large values of the deformation field given by the numerical simulations is completely different from the one obtained by analytical calculation. In the following we studied the interaction of these shock waves with a mass impurity placed in the bead chain. Two different physical pictures emerge whether we consider a light or a heavy impurity mass. The scatter of the shock wave with a light impurity yields damped oscillations of the impurity which then behave as a solitary wave source. Differently an heavy impurity is just shifted by the shock and the transmitted wave loses its solitonic character being fragmented into waves of decreasing amplitudes. Received 23 June 1999  相似文献   

16.
Granular media jam into a panoply of metastable states. The way in which these states are achieved depends on the nature of local and global constraints on grains; here we investigate this issue by means of a non-equilibrium stochastic model of a hindered granular column near its jamming limit. Grains feel the constraints of grains above and below them differently, depending on their position. A rich phase diagram with four dynamical phases (ballistic, activated, logarithmic and glassy) is revealed. The statistics of the jamming time and of the metastable states reached as attractors of the zero-temperature dynamics is investigated in each of these phases. Of particular interest is the glassy phase, where intermittency and a strong deviation from Edwards' flatness are manifest.  相似文献   

17.
We show that a rich variety of dynamic phases can be realized for mono- and bidisperse mixtures of interacting colloids under the influence of a symmetric flashing periodic substrate. With the addition of dc or ac drives, phase locking, jamming, and new types of ratchet effects occur. In some regimes we find that the addition of a nonratcheting species increases the velocity of the ratcheting particles. We show that these effects occur due to the collective interactions of the colloids.  相似文献   

18.
Magneto-optic tweezers were used for measurements of liquid-crystal-mediated forces between spherical beads with tangential anchoring in thin nematic samples. Repulsive force, which results from the quadrupolar symmetry of defects around the immersed beads, decreases proportionally to 1/x6, with x being the bead separation. The velocity with which the particles are pushed apart also follows the same separation dependence. We thus find the effective drag coefficient gamma(eff) independent of x for surface-to-surface distances as small as 10% of the bead diameter.  相似文献   

19.
《Physica A》2006,369(2):535-544
Local stress fluctuations are measured in annular rapid shear flows of granular medium made of steel spheres with 2 and 3 mm in diameter. Both monodisperse packing and bidisperse packing are investigated to reveal the influence of size diversity on intermittent features of granular materials. Experiments are conducted in an annulus that can contain up to 15 kg of the spherical steel balls. Shearing of granular medium takes place via the rotation of the upper plate which compresses the material loaded inside the annulus. Fluctuations of compressive force are locally measured at the bottom of the annulus based on piezoelectric phenomenon. Rapid shear flow experiments are pursued at different compressive forces and shear rates and the sensitivity of fluctuations is then investigated by different means through monodisperse and bidisperse packings.  相似文献   

20.
We experimentally investigate the segregation of a binary mixture of spherical beads confined between two horizontal vertically vibrating plates. The two kinds of beads are of equal diameter and mass but have different restitution coefficients. Segregation occurs in particular ranges of vibration amplitude and frequency. We find that the collisions between beads at an angle to the horizontal plane induce an effective horizontal repulsive force. When one or both bead types bounce up and down in synchronization, the effective repulsive force between the two types of beads is likely to be larger than that found within a single bead type, resulting in the mixture segregating. Non-horizontal collisions also play a role in stabilizing the segregation state by transferring the horizontal kinetic energy back into vertical motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号