首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly monodisperse spherical silica nanoparticles with diameters ranging from ca. 15 to 200 nm were prepared using an environmentally friendly water-based synthesis. The size of the spheres can be precisely controlled by using a facile regrowth procedure in the same reaction media. Furthermore, these monodisperse silica spheres can be successfully used as seeds in the well-established St?ber silica preparation. The regrowth approach allows for easy incorporation of functional additives. High monodispersity and charge stabilization renders these nanoparticles highly suitable for close-packed array formation and colloidal templating.  相似文献   

2.
<正>The triple-shelled hollow spheres with optical properties were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization.After removal the core templates of the poly(styrene),the hollow silica spheres were obtained.The coating process of poly(methyl methacrylate)(PMMA) on the hollow silica spheres surface via surface RAFT polymerization was performed subsequently.The polymers coated on the hollow spheres surfaces were end-functionalized by trithiocarbonate,and they were used as RAFT agent to proceed the chain extension polymerization using Tb complex as monomer.The samples were characterized by FT-IR,SEM and luminescence spectroscopy respectively.The results indicated that the triple-shelled hollow spheres had been prepared successfully and the average diameter of the hollow core was about 1μm.  相似文献   

3.
In this paper, we report a novel method for the fabrication of small monodisperse hollow silica spheres. In this approach, when silica shells were coated on polystyrene particles by the sol-gel method, the polystyrene cores were dissolved subsequently, even synchronously, in the same medium to form monodisperse hollow spheres. Neither additional dissolution nor a calcination process was needed to remove the polystyrene cores. Transmission electron microscopy, scanning electron microscopy, and porosity measurements were used to characterize the monodisperse hollow silica spheres.  相似文献   

4.
Hollow silica spheres have been successfully fabricated by means of a miniemulsion technique, in which miniemulsion droplets of tetraethoxysilane (TEOS) and octane were prepared with cetyltrimethylammonium bromide as a surfactant and hexadecane as a costabilizer and used as templates. As the TEOS diffused out from the droplets, it was hydrolyzed and condensed to form a silica shell at the oil/water interface. In this way, hollow silica spheres could be obtained directly since the miniemulsion droplets of octane could be evaporated very easily during the reaction process or the drying process; neither an additional dissolution nor a calcination process or additional surface modification of the templates were needed.  相似文献   

5.
Core@shell spheres made up of a thin layer of resorcinol-formaldehyde enveloping a silica core were prepared by means of a one-step method under St?ber conditions. These spheres are used as a platform for the synthesis of carbon or polymeric capsules, and functionalized nanocomposites.  相似文献   

6.
In this study,we have established a facile method to synthesize functional hollow carbon spheres with large hollow interior,which can act as active colloidal catalysts.The method includes the following steps:first,hollow polymer spheres with large hollow interior were prepared using sodium oleate as the hollow core generator,and 2,4-dihydroxybenzoic acid and hexamethylene tetramine(HMT) as the polymer precursors under hydrothermal conditions;Fe 3+ or Ag + cations were then introduced into the as-prepared hollow polymer spheres through the carboxyl groups;finally,the hollow polymer spheres can be pseudomorphically converted to hollow carbon spheres during pyrolysis process,meanwhile iron or silver nanoparticles can also be formed in the carbon shell simultaneously.The structures of the obtained functional hollow carbon spheres were characterized by TEM,XRD,and TG.As an example,Ag-doped hollow carbon spheres were used as colloid catalysts which showed high catalytic activity in 4-nitrophenol reduction reaction.  相似文献   

7.
It is well-known that silica can be etched in alkaline media or in a unique hydrofluoric acid (HF) solution, which is widely used to prepare various kinds of hollow nanostructures (including silica hollow structures) via silica-templating methods. In our experiments, we found that sto?ber silica spheres could be etched in generic acidic media in a well-controlled way under hydrothermal conditions, forming well-defined hollow/rattle-type silica spheres. Furthermore, some salts such as NaCl and Na(2)SO(4) were found to be favorable for the formation of hollow/rattle-type silica spheres.  相似文献   

8.
Preparation and self-assembly of carboxylic acid-functionalized silica   总被引:1,自引:0,他引:1  
A simple method for the fabrication of silica nanoparticle film based on the covalent-bonding interaction between carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) and amino-terminated silicon wafer was developed. Prior to assembly, silica nanoparticles with an average diameter 80 nm were prepared using the St?ber method, amino-functionalized silica nanoparticles (SiO(2)-NH(2)) were prepared by a silanization with 3-aminopropyltriethoxysilane (APTES), while carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) were prepared by a ring opening linker elongation reaction of the amine functions with succinic anhydride, at the same time, amino-terminated silicon wafer (Si-NH(2)) was obtained by self-assembling 3-aminopropyltriethoxysilane, then one layer relative close-packed carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) was arranged on silicon wafer through amidation reaction under DCC coupling agent.  相似文献   

9.
Sonochemical synthesis of hollow PbS nanospheres   总被引:5,自引:0,他引:5  
PbS hollow nanospheres with diameters of 80-250 nm have been synthesized by a surfactant-assisted sonochemical route. The nanostructures were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), (high-resolution) transmission electron microscopy [(HR)TEM], and scanning electron microscopy (SEM) images. Structural characterization indicates that shells of the hollow spheres are composed of PbS nanoparticles with diameters of about 12 nm. The formation of the hollow nanostructure was explained by a vesicle-template mechanism, in which sonication and surfactant play important roles. Furthermore, uniform silica layers were successfully coated onto the hollow spheres via a modified St?ber method to enhance their performance for promising applications.  相似文献   

10.
Silica nanobottles templated from functional polymer spheres   总被引:2,自引:0,他引:2  
Nanosized hollow silica spheres with holes in the wall (denoted as silica nanobottles) have been successfully prepared by assembly of functional polymer nanospheres with tetraethoxysilane (TEOS) through hydrothermal methods, coupled with removal of the core by programmed calcination. The functional polymer nanospheres were obtained by emulsifier-free emulsion copolymerization of styrene and (ar-vinylbenzyl) trimethylammoium chloride. The silica nanobottle sample was characterized by thermogravimetric analysis (TG), differential thermal analysis (DTA), transmission electron microscopy (TEM), and nitrogen adsorption techniques. The above characterizations confirm that the silica nanobottles have holes of about 8 nm in the wall and this unique structural feature might be useful for their encapsulation. Furthermore, characterization by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and UV-visible absorption (UV-vis) showed that the luminescent material Eu(TTA)(3)(TPPO)(2) could be effectively encapsulated in silica nanobottles. This reveals that silica nanobottles have potential applications for nanotechniques.  相似文献   

11.
Budded silica spheres have been synthesized by a novel rapid evaporation-induced self-assembly combined with the well-known St?ber method. The morphology of budded silica spheres were examined by transmission electron microscopy, and their mean size and size distribution were also estimated. Both the temperature of the sol-gel reaction and following post-treatment were found to play crucial roles in determining the surface morphology of obtained silica spheres and the yield of budded silica spheres. The possible formation mechanism was also proposed on the basis of experimental observations. The budded silica spheres would have higher surface areas than smooth silica spheres, and significant potentials for catalyst supports, building blocks of photonic crystals, and for constructing superhydrophobic and superhydrophilic surfaces.  相似文献   

12.
The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites.  相似文献   

13.
The St?ber method has been adopted to prepare hybrid core-shell particles by coating the surfaces of monodisperse polystyrene beads with uniform silica shells. Polystyrene beads with diameters in the range of 0.1-1.0 microm have been successfully demonstrated for use with this process, and the thickness of the silica coating could be controlled in the range of 50-150 nm by adjusting the concentration of tetraethoxysilane, the deposition time, or both. The morphology and surface smoothness of the deposited silica were found to strongly depend on a number of parameters such as the surface functional groups on the polymer beads, the pH value of the medium, and the deposition time. Hollow spheres made of silica could be obtained by selectively removing the polymer cores via calcination in air at an elevated temperature or by wet etching with toluene. These core-shell colloids were also explored as building blocks to fabricate long-range ordered lattices (or colloidal crystals) that exhibited stop bands different from those assembled from spherical colloids purely made of either polystyrene or silica.  相似文献   

14.
Macroscopic mesoporous silica spheres have been fabricated by alternatively depositing preformed MCM-41 nanoparticles and polyelectrolytes onto polystyrene lattices. High surface area hollow mesoporous spheres were obtained by removal of the core by solvent or calcination. Further, the versatility of the layer-by-layer (LBL) method was extended to fabricate magnetite-mesoporous silica composites by depositing magnetite and MCM-41 nanoparticles onto polystyrene beads. Such high surface area composites are important since the mesopores can be used for encapsulation of varied materials like enzymes and drugs while the presence of magnetite ensures application in biocatalysis and separation under magnetic field.  相似文献   

15.
This paper presents a novel and facile method to fabricate hollow silica/sliver (SiO(2)/Ag) nanocomposite spheres. In this approach, the monodisperse hollow SiO(2) colloids bearing quantenary ammonium groups were prepared by dispersion polymerization combined sol-gel process and used as templates. The Ag(+) ions were first adsorbed onto the surfaces of the hollow SiO(2) beads via electrostatic interaction and then in situ reduced by the deprotonated silanol groups of the hollow SiO(2) beads, no extra reducing agents or catalysts were added during the reduction process. TEM, SEM and EDX analyses indicated that Ag nanoparticles were successfully deposited onto the surfaces of hollow SiO(2) beads. Some influencing parameters, such as the amount of quantenary ammonium groups in the inner wall of hollow SiO(2) colloids, Ag(+) ions concentration and reaction temperature, on the deposition of Ag nanoparticles onto SiO(2) colloids were investigated. Preliminary antibacterial tests indicated that these hollow nanocomposite spheres showed excellent antibacterial ability.  相似文献   

16.
Using the controlled precipitation of silicic acid on functionalized polystyrene latexes, nanometer sized silica-coated spheres could be prepared and subsequently modified to allow dispersion in non-aqueous solvents; removal of the interior polymer by calcination resulted in the formation of hollow silica spheres.  相似文献   

17.
Raspberrylike organic/inorganic composite spheres are prepared by stepwise electrostatic assembly of polyelectrolytes and silica nanoparticles onto monodisperse polystyrene spheres. Hierarchically structured porous films of silica hollow spheres are fabricated from these composite spheres by layer‐by‐layer assembly with polyelectrolytes followed by calcination. The morphologies of the raspberrylike organic/inorganic composite spheres and the derived hierarchically structured porous films are observed by scanning and transmission electron microscopy. The surface properties of these films are investigated by measuring their water contact angles, water‐spreading speed, and antifogging properties. The results show that such hierarchically structured porous films of silica hollow spheres have unique superhydrophilic and antifogging properties. Finally, the formation mechanism of these nanostructures and property–structure relationships are discussed in detail on the basis of experimental observations.  相似文献   

18.
Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 °C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 °C, exhibiting excellent thermal stability.  相似文献   

19.
In this work, we report an efficient method to produce pure hollow silica spheres (HSS) using phenyltrimethoxysilane (PTMS) compound. The production of HSS was carried out via hydrolysis of PTMS in the aqueous media and followed by a condensation reaction to form silica spheres with phenyl groups. The product was then calcined to remove phenyl groups and obtain pure silica spheres with >95% fine structure. The chemical nature of pure silica was confirmed by Fourier transforms infrared spectroscopy. The calcined HSS were stable beyond the temperature of 900 °C as confirmed by thermal gravimetric analysis (TGA). The calcined spheres preserved their spherical appearance and hollow core as shown by SEM and TEM micrographs. Interestingly, the average size of the spheres was reduced significantly after calcination from 760 to 510 nm, confirming further the removal of phenyl groups. The calcined HSS offered much higher surface area (As) when analysed by BET; As for calcined product was ~406 and mere ~4.8 m2/g for uncalcined HSS. Finally, drug release study of cisplatin/HSS showed over 45% of steady cumulative release for 72 h. The prepared HSS can be dispersed in water opening the possibility of many novel bio/non-bio applications.  相似文献   

20.
模板法制备复合中空微球   总被引:3,自引:1,他引:2  
本文报道以一种商品化的聚苯乙烯中空球为模板, 采用溶胀聚合技术合成了具有IPN(Inter-Penetrating Network)结构的复合中空球; 对其中的一种高分子网络进行化学改性引入所需官能团, 制得带有羧基的聚合物凝胶中空球; 利用凝胶诱导生长特性, 成功制得聚合物复合中空球. 此方法无需去除模板就可批量制备各种复合功能中空球.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号