首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymer dispersed liquid crystals (PDLCs) have been extensively studied for various excellent electro-optical applications. The anchoring interaction of liquid crystals (LCs) molecules on the surface of the polymer cavity surrounding an LCs droplet has a crucial effect on the electro-optical performance of the PDLCs. The effect of polymerizable surfactants on the electro-optical properties of PDLCs films was studied in detail. The active double bonds were polymerized with prepolymer to stabilize the performance of polymer matrix. The experimental results showed that polymerizable surfactants could effectively reduce the driving voltage. The speed of polymerization was monitored by real-time transmittance. The electro-optical properties of PDLC films were measured by Polarimeter (PerkinElmer Model 341). The driving electric field was reduced from 3.9 V/μm to about 2.8 V/μm for doping undec-10-enoic acid at curing temperature 80?°C. The surfactants containing polymerizable functional groups, polarity, and alkyl chain weakened the surface anchoring between LCs droplets and polymer interface. The morphologies of PDLCs films were also investigated by polarizing optical microscopy (POM) and Fourier transform infrared (FTIR) images. The LC droplets were encapsulated by polymerizable surfactant according to FTIR images.  相似文献   

2.
《Liquid crystals》1997,23(6):861-867
Polymer dispersed liquid crystals (PDLCs) are materials composed of liquid crystal microdroplets dispersed in a polymer matrix. Their electro-optic properties make them useful for applications as large-area electrically switchable architectural windows (smart windows). For these applications, the key parameters of performance are the haze (both normal and offaxis) and the opacity. In the present work we show how it is possible to prepare a high performance smart window by controlling the haze and opacity of PDLC films using the polymer induced phase separation (PIPS) method.  相似文献   

3.
In this study, we demonstrated that doping polymer matrix with a small amount of reduced graphene oxide (rGO) component (0.05–0.2%) had significant influence on the polymerisation kinetics and electro-optical performances of polymer-dispersed liquid crystal films (PDLCs) fabricated with macro reversible addition-fragmentation chain transfer agents. The effects of rGO content were studied in terms of morphology, compound viscosity, polymer conductivity, polymerisation kinetics and driving voltage of PDLCs. The results exhibited that higher rGO content increased the compound viscosity and the entire process proceeded slowly. Furthermore, the addition of rGO increased the polymer conductivity and local electric field, and reduced the saturation voltage as well as the threshold voltage from 27.3 to 19.5 V and 13.2 to 6.41 V, respectively.  相似文献   

4.
An investigation of the electrooptic properties of polymer dispersed liquid crystals (PDLC) is presented. These materials are light modulating systems. They show a reversible optical response from an opaque state to a highly transmitting state under the action of an appropriate electric field which aligns the liquid crystal director. The switching voltage required to establish such an electric field has been monitored as a function of (i) the starting materials used for the preparation of the PDLCs, (ii) the ageing (curing time) of the PDLC cells. Other physical properties, such as the electrical resistivity and the dielectric constant of the materials, have been measured. The correlations between these properties have been studied. The PDLC switching voltage appears to be strongly correlated with the resistivity. Our data suggest that ionic impurities play a dominant role with respect to the electrooptic response of PDLC films.  相似文献   

5.
An investigation of the electrooptic properties of polymer dispersed liquid crystals (PDLC) is presented. These materials are light modulating systems. They show a reversible optical response from an opaque state to a highly transmitting state under the action of an appropriate electric field which aligns the liquid crystal director. The switching voltage required to establish such an electric field has been monitored as a function of (i) the starting materials used for the preparation of the PDLCs, (ii) the ageing (curing time) of the PDLC cells. Other physical properties, such as the electrical resistivity and the dielectric constant of the materials, have been measured. The correlations between these properties have been studied. The PDLC switching voltage appears to be strongly correlated with the resistivity. Our data suggest that ionic impurities play a dominant role with respect to the electrooptic response of PDLC films.  相似文献   

6.
《Liquid crystals》2000,27(1):1-4
A new polymer dispersed liquid crystal (PDLC) system characterized by easy processing and an open porosity has been elaborated. This PDLC is based on a pre-formed, porous, thin polymer film of a commercially available PVDF-HFP copolymer wetted by the eutectic mixture of cyano bi- and ter-phenyls known as E7 (Merck Ltd, UK). This new process is of interest because of its simplicity, and the fact that there is no risk of intermixing between the liquid crystal and the polymer matrix as occurs in a conventional PDLC. An electric field applied across the thin film results in a change in its transmission, due to the reorientation of the liquid crystal director, as already known for closed porosity PDLCs. The electro-optic properties of this PDLC have been studied and semi-quantitatively interpreted on the basis of the response theory of conventional closed porosity PDLCs.  相似文献   

7.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

8.
Polymer-dispersed liquid crystal (PDLC) films operating in reverse mode are transparent electro-optical devices, which can be turned into an opaque state by application of a suitable electric field. The effect was investigated of different UV powers, used during the polymerization process, on the electro-optical and morphology properties of PDLCs, working in reverse mode operation. Films were obtained by UV polymerization of mixtures of a low molecular weight nematic liquid crystal and a photopolymerizable liquid crystal monomer, homeotropically aligned by rough conductive surfaces. The electro-optical and morphology properties of samples were related to the polymerization conditions. Samples polymerized by lower UV powers exhibited “polymer ball” morphology and an electro-optical response due to the liquid crystal director reorientation, whereas samples obtained at higher UV powers showed a “Swiss cheese” morphology and an electro-optical response due to dynamic scattering. In addition, we observed by conductivity and IR measurements that UV exposure induces a degradation of the nematic liquid crystal.  相似文献   

9.
In order to study the droplet pattern and electro-optic (EO) behaviour of polymer dispersed liquid crystal (PDLC) with the addition of dye, dichroic polymer dispersed liquid crystal (DPDLC) films were prepared using a nematic liquid crystal (NLC), photo-curable polymer (NOA 65) and anthraquinone blue dichroic dye (B2), in equal ratio (1:1) of polymer and liquid crystal (LC) by polymerisation induced phase separation (PIPS) technique. Dichroic dye was taken in different concentration (wt./wt. ratio) as 0.0625%, 0.125%, 0.25%, 0.5% and 1% of the LC mixture in DPDLC films. Initially, in an open circuit when there is no proviso for external electric field (0 V), LC droplets in polymer matrix exhibited bipolar pattern, though on closing the circuit with the increase of electric field pattern of droplets starts changing, LC molecules align along the direction of applied electric field and aligned completely relatively at higher field (30 V), which illustrate vertical radial pattern. Further, results show that the DPDLC film containing 0.0625% dye concentration with consistent average droplet size ~4.30 μm, exhibits the best transmission at lower operating voltage.  相似文献   

10.
Partial off-state alignment of the liquid crystal in polymer dispersed liquid crystal (PDLC) droplets was obtained by the application of electric or magnetic fields during their formation. Photopolymerization was used to induce phase separation of the liquid droplets from monomer/liquid crystal solutions. Substantial director directionality was retained in these PDLC films after removal of the fields used during their formation. This alignment affected both the off-state and the on-state electro-optic properties of the films. Transverse electrical fields (5 to 60 V across a 15 μm thickness) applied during PDLC formation from a solution of E7 (BDH Ltd) in a monomer resulted in PDLC films with progressively lower off-state scattering and lower threshold voltage. Strong longitudinal magnetic fields (9 to 14 T) applied during PDLC formation with these materials resulted in strong polarization effects in the light scattering off-state. In the infrared region, where there is less light scattering than in the visible region, the longitudinally aligned films shows tunable birefringent electro-optic effects while retaining the fast time response characteristics of PDLC films with small droplet sizes.  相似文献   

11.
In this study, macro-(RAFT) reversible additional fragmental chain transfer agent prepared by reversible additional fragmental chain transfer polymerisation has been incorporated into polymer dispersed liquid crystals (PDLCs). The effects of concentration, molecular weight and glass transition temperature of macro-RAFT agent were studied in terms of morphology, polymerisation kinetics, molecular weight of polymer matrix and electro-optical properties of the films. It was found that the key factor influencing morphology was the mobility of macro-RAFT agent chain rather than polymerisation rate and molecular weight of polymer matrix. Furthermore, the decrease in the mobility of macro-RAFT agent chain caused less liquid crystal nematic fraction, smaller liquid crystal domain size and greater driving voltage.  相似文献   

12.
The application of high intensity electric fields to polymer dispersed liquid crystal (PDLC) films can induce changes in their electro-optical properties and morphology. In particular, a quasilinear electro-optical response to an external electric field can be achieved if an internal built-in d.c. field is induced. In this work, we show how the liquid crystal/polymer weight ratio influences the electro-optical response of 'charged' PDLCs, i.e. of PDLC films after the application of a high intensity electric field. We observed that a quasilinear electro-optical response can be achieved in a well determined range of composition. Larger liquid crystal concentrations are unable to maintain the built-in field, while PDLCs with lower liquid crystal loadings do not allow the onset of a built-in d.c. field.  相似文献   

13.
Polymer dispersed liquid crystals (PDLCs) using nematic liquid crystal and photo-curable polymer (NOA 65) were prepared by polymerisation-induced phase separation technique, in equal ratio (1:1) of polymer and liquid crystal (LC). We demonstrate that doping of small amount (0.125%, wt./wt.) of multiwall carbon nanotubes (CNTs) and orange azo dichroic dye in PDLC generously controlled the molecular orientation, dynamics of LC in droplet and size of droplets. The effects of multiwall CNTs and dye on PDLCs were studied in terms of transition temperature, droplet morphology, transmittance characteristic, contrast ratio and response time. The results exhibited that the values of the threshold electric fields were reduced from 8 V/µm (pure PDLC) to 1.18 and 1.72 V/µm, doped with multiwall CNTs and dye, respectively. The CNTs-doped PDLC shows faster switching response as compared with pure PDLC and dye-doped PDLC. However, dye-doped PDLC shows much higher contrast among all PDLC samples. Further, the results also illustrate that the birefringence value of LC in PDLCs was changed with doping of CNTs and dye.  相似文献   

14.
《Liquid crystals》1999,26(12):1735-1741
When investigated by optical microscopy between crossed polarizers, the isotropic to cholesteric transition may appear like fingerprint-patterned droplets embedded in a black isotropic matrix. In the present work, such PDLC-like (polymer dispersed liquid crystal) patterns, only occurring over 0.7 C, have been entrapped and stored at ambient temperature in a polymer film. We used a UV polymerization process with different sequences in which illumination time and UV power progressively vary. From a conceptual viewpoint, these PDLC-like patterns come solely from liquid crystalline material, whereas all the conventional PDLCs are binary mixtures of a macromolecular compound or 'prepolymer' with a conventional low molecular mass liquid crystal. The fact that isotropic matrix and cholesteric droplets differ only from the viewpoint of molecular order and not in their chemical nature, permits comparisons with the usual case for which the choice of polymer-forming material is crucial and the polymer/liquid crystal interface is an important factor for controlling PDLC electro-optic properties. The present system gives an opportunity to investigate by scanning electron microscopy (SEM) the droplet microstructure (isotropic-cholesteric interface, fingerprint patterns or defects), whereas previous SEM studies were focused on the shape and size of empty cavities, since the fluid liquid crystal was inevitably removed from the PDLC system.  相似文献   

15.
The conductance of polymer matrix is an important factor for the property of the polymer dispersed liquid crystal (PDLC). The nanographites are dispersed into the polymer matrix for optimising the dielectric conductive property. The synthesised nanoparticles SiO2 was used as photonic crystal (PC) to work as a template for fabricating PDLC films. A mixture of pre-polymer and liquid crystals (LCs) was infiltrated into the void of the PC and polymerised under ultraviolet light. The void of the PC made uniform the dispersion of the liquid crystals in the films. The optical property of the PDLC films was optimised by doped nanographites and negative charge SiO2 template. The effect of negative charge SiO2 and nanographites on the threshold voltage and driving voltage was researched. The morphology of the PDLC films was studied by the FTIR image. The dispersed LCs droplets were uniformly affected by the addition of the nanographites. The LCs droplets dispersed in the polymer were located in the void of the SiO2 photonic crystal.  相似文献   

16.
以可逆加成-断裂链转移(RAFT)、引发转移终止(iniferter)活性自由基聚合相结合的方法,用一步法制备了不同分子量的大分子引发剂RAFT-PS-co-PCMSI(MI),并通过紫外光聚合诱导相分离法制备了以接枝聚合物为基体的聚合物分散液晶(PDLC)膜.研究了不同分子量的MI对PDLC的微观形貌,关闭状态透光率,阈值电压,饱和电压以及记忆效应等方面的影响.研究表明,降低PDLC中MI的分子量,会使得液晶微滴粒径增大,阈值电压(Vth)、饱和电压(Vsat)减小,记忆效应、关闭状态透光率升高.  相似文献   

17.
The application of high intensity electric fields to polymer dispersed liquid crystal (PDLC) films can induce changes in their electro‐optical properties and morphology. In particular, a quasilinear electro‐optical response to an external electric field can be achieved if an internal built‐in d.c. field is induced. In this work, we show how the liquid crystal/polymer weight ratio influences the electro‐optical response of ‘charged’ PDLCs, i.e. of PDLC films after the application of a high intensity electric field. We observed that a quasilinear electro‐optical response can be achieved in a well determined range of composition. Larger liquid crystal concentrations are unable to maintain the built‐in field, while PDLCs with lower liquid crystal loadings do not allow the onset of a built‐in d.c. field.  相似文献   

18.
Polymer-dispersed liquid crystals (PDLCs) are composite materials formed by micron-sized droplets of liquid crystals (LCs) dispersed in a polymer matrix, which can be turned from an opaque state to a transparent one by application of a suitable electric field. PDLCs have been proposed in applications related to the control of light transmittance on large surfaces (light shutters, displays, rear mirrors). Despite several advantages, PDLCs’ main drawback is haze, i.e. the fast decay of transmission at large viewing angles. In this paper, a method for achieving highly transparent PDLC devices over a wide range of viewing angles is proposed. The method is based on the use of PDLCs with tilted elongated LC droplets and driven by opportune electric fields, which are experimentally calculated and able to ensure an almost constant value for OFF-axis transmittance.  相似文献   

19.
When investigated by optical microscopy between crossed polarizers, the isotropic to cholesteric transition may appear like fingerprint-patterned droplets embedded in a black isotropic matrix. In the present work, such PDLC-like (polymer dispersed liquid crystal) patterns, only occurring over 0.7 C, have been entrapped and stored at ambient temperature in a polymer film. We used a UV polymerization process with different sequences in which illumination time and UV power progressively vary. From a conceptual viewpoint, these PDLC-like patterns come solely from liquid crystalline material, whereas all the conventional PDLCs are binary mixtures of a macromolecular compound or 'prepolymer' with a conventional low molecular mass liquid crystal. The fact that isotropic matrix and cholesteric droplets differ only from the viewpoint of molecular order and not in their chemical nature, permits comparisons with the usual case for which the choice of polymer-forming material is crucial and the polymer/liquid crystal interface is an important factor for controlling PDLC electro-optic properties. The present system gives an opportunity to investigate by scanning electron microscopy (SEM) the droplet microstructure (isotropic-cholesteric interface, fingerprint patterns or defects), whereas previous SEM studies were focused on the shape and size of empty cavities, since the fluid liquid crystal was inevitably removed from the PDLC system.  相似文献   

20.
In the present communication, we report on the synthesis and electro-optic investigation of photosensitive CdSe quantum dots (QDs) dispersed polymer stabilised liquid crystal (PSCLC) luminescent gel. The assembly of the fluorescence properties of CdSe QDs facilitate the anisotropy of PSCLC gel and hence manipulates the optical and electro-optic switching properties, which was further investigated using polarised fluorescence spectrophotometer. The circularly polarised fluorescence intensity was tuned electrically so as to affect the orientations of liquid crystal in the helix. It was found that the electro-optic switching behaviour of QDs-doped sample predicts the improvement in threshold voltage and hence makes them applicable for the switchable liquid crystal contrivances with low power consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号