首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The bimolecular single collision reaction potential energy surface of an isocyanate NCO radical with a ketene CH2CO molecule was investigated by means of B3LYP and QCISD(T) methods. The computed results indicate that two possible reaction channels exist on the surface. One is an addition-elimination reaction process, in which the CH2CO molecule is attacked by the nitrogen atom at its methylene carbon atom to lead to the formation of the intermediate OCNCH2CO followed by a C-C rupture channel to the products CH2NCO+CO. The other is a direct hydrogen abstraction channel from CHzCO by the NCO radical to afford the products HCCO+HNCO. Because of a higher barrier in the hydrogen abstraction reaction than in the addition-elimination reaction, the direct hydrogen abstraction pathway can only be considered as a secondary reaction channel in the reaction kinetics of NCO+ CH2CO. The predicted results are in good agreement with previous experimental and theoretical investigations.  相似文献   

2.
The potential energy surface information of the CH2CO + CN reaction is obtained at the B3LYP/6‐311+G(d,p) level. To gain further mechanistic knowledge, higher‐level single‐point calculations for the stationary points are performed at the QCISD(T)/6‐311++G(d,p) level. The CH2CO + CN reaction proceeds through four possible mechanisms: direct hydrogen abstraction, olefinic carbon addition–elimination, carbonyl carbon addition–elimination, and side oxygen addition–elimination. Our calculations demonstrate that R→IM1→TS3→P3: CH2CN + CO is the energetically favorable channel; however, channel R→IM2→TS4→P4: CH2NC + CO is considerably competitive, especially as the temperature increases (R, IM, TS, and P represent reactant, intermediate, transition state, and product, respectively). The present study may be helpful in probing the mechanism of the CH2CO + CN reaction. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

3.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

4.
The gas-phase reaction of methacrolein with the OH radical, in the presence of NOx, was investigated at 298 ± 2 K and atmospheric pressure of air. Hydroxyacetone, methylglyoxal, a peroxyacyl nitrate identified as CH2 ? C(CH3)C(O)OONO2 (peroxymethacryloyl nitrate), formaldehyde, CO, and CO2 were observed to be the major products. The product yield data for these compounds show that OH radical addition to the >C ? C< bond accounts for ca. 50% of the overall reaction, with the remaining ca. 50% proceeding via H—atom abstraction from the ? CHO group. The data suggest that the alkoxy radical formed following the addition of OH to the terminal carbon atom, decomposes primarily to give the formyl radical plus hydroxyacetone. A lower limit ratio of 5: 1 has been estimated for OH radical addition to the terminal carbon atom of the double bond relative to addition on the inner carbon atom.  相似文献   

5.
Six product channels have been found in the association reaction of CN + CH2CO, and a variety of possible complexes and saddle points along the minimum energy reaction paths have been characterized at the UMP2(full)/6‐31G(d) level. The dominant reaction channels are the production of CH2CN + CO and CH2NC + CO. The isomerization and dissociation reactions of the major products of CH2CN and CH2NC have been investigated using the G2MP2 level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

6.
The disproportionation reactions of [M(CO)6-n-n(CH3CN)nn] (M = Cr,Mo, W; n = 1—3) proceed in solution according to the sequence M(CO)3(CH3CN)3 → M(CO)4(CH3CN)2 → M(CO)5(CH3CN) → M(CO)6.Rapid changes are observed in Nujol and acetone at ambient temperature, but in acetonitrile comparable changes require higher temperatures. Additional carbon monoxide groups are provided by the complete decomposition of part of the sample of the complex but free carbon monoxide is not detected in solution. The observed disproportionation reaction enabble the use of M(CO)3(CH3CN)3 complexes for the synthesis of M(CO)4 derivatives to be rationalised. The nature of an intermediate absorbing at 1996 cm-1 in the IR spectrum is discussed.  相似文献   

7.
The reaction mechanism of CN radicals with ClO radicals has been studied theoretically using ab initio and density functional theory (DFT). The result shows that the main reaction path is the O atom in radical ClO attacks the C atom in radical CN to compose the intermediate 1 ClOCN. Three thermodynamically accessible prodncts, P1 (CO+ClN), P3 (NO+CCl), and P4 (ClNCO), were obtained from intermediate 1 through isomerization and decomposition reactions. P4 is the primary product, and P1 and P3 are the secondary product. Compared with the singlet potential energy surface, the contribution of the triplet potential energy surface can be ignored.  相似文献   

8.
New stable divalent tin derivatives containing no bulky substituents at the metal atom, Hal—Sn— OCH2CH2NMe2 (Hal = Cl or F), were synthesized, and their crystal structures were studied by X-ray diffraction. Unlike the analogous monomeric divalent germanium derivative Cl—Ge—OCH2CH2NMe2, the new compounds are centrosymmetric dimers formed via two intermolecular Sn←CO coordination bonds. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 259–262, February, 2007.  相似文献   

9.
Reaction of [MnBr(CO)3L] [L = Ph2POCH2CH2OPPh2, L1 , {(CH3)2CH}2POCH2CH2OP{CH(CH3)2}2, L2 ] with AgO3SCF3 and AgO2CCF3 in dichloromethane afforded the new complexes [Mn(O3SCF3)(CO)3L] and [Mn(O2CCF3)(CO)3L], respectively. Substitution of O3SCF3 resulted in the new species [Mn(SCN)(CO)3L], [Mn(NCCH3)(CO)3L](O3SCF3) and, in the case of L2 , [Mn(CN)(CO)3L2]. By contrast, any attempt to displace the O2CCF3 ligand in the same way was unsuccessful. After maintaining for some days the complex [Mn(CH3CN)(CO)3L1](O3SCF3) in dichloromethane at room temperature, the new complex [MnCl(CO)3L1] was formed. All the new complexes were characterized by elemental analysis, mass spectrometry and IR and NMR spectroscopies. In the case of [Mn(O3SCF3)(CO)3L1], [Mn(O2CCF3) (CO)3L1], [MnCl(CO)3L1], [Mn(CH3CN) (CO)3L2] (O3SCF3), [Mn(CN)(CO)3L2] and [Mn(O2CCF3)(CO)3L2], together with the previously synthesized complex [MnBr(CO)3L2], suitable crystals for X‐ray structural analysis were isolated. In all of them the Mn atom adopts six‐coordination by bonding to the three CO ligands, the two P atoms of L and either one C atom (CN), one oxygen atom (O2CCF3, O3SCF3), one N atom (CH3CN, SCN) or the halogen atom (Cl, Br).  相似文献   

10.
Thermolysis of (H2CPz′2)M(CO)4 (H2CPz′2 = bis(3,5-dimethylpyrazol-1-yl)methane; M=Mo, W) in 1,2-dimethoxyethane did not give the expected 16-electron complexes, (H2CPz′2)M(CO)3, but gave dinuclear compounds, [(H2CPz′2)M(CO)3]2, probably containing two linear carbonyl bridges and no metal-metal interactions. The dimers reacted with CH3CN to give mononuclear compounds, (H2CPz′2)M(CO)3(NCCH3), identical to the substitution products between (H2CPz′2)M(CO)4 and CH3CN.  相似文献   

11.
The complex CpFe(CO)PPh3)(σ-CH2CH2CN) cleanly undergoes an isomerization reaction to Cpfe(CO)PPH3)(σ-CH(CH3)CN) when heated in solution at 95°C. The electron-withdrawing cyano group thus stabilizes a secondary alkylmetal complex in preference to the isomer containing a primary carbon to iron bond.  相似文献   

12.
CuI‐based coordination polymers with 1, 2‐ethanedithiol, 3, 6‐dioxa‐1, 8‐octanedithiol and 3‐oxa‐1, 5‐pentanedinitrile as respectively μ‐S, S′ and μ‐N, N′ bridging ligands have been prepared by reaction of CuI with the appropriate alkane derivative in acetonitrile. equation/tex2gif-stack-1.gif[Cu(HSCH2CH2SH)2]I ( 1 ) contains 44 cationic nets, equation/tex2gif-stack-2.gif[(CuI)2(HSCH2CH2OCH2CH2OCH2CH2SH)] ( 2 ) neutral layers in which stairlike CuI double chains are linked by dithiol spacers. In contrast to these 2D polymers, equation/tex2gif-stack-3.gif[CuI(NCCH2CH2OCH2CH2CN)] ( 3 ) and equation/tex2gif-stack-4.gif[(CuI)4(NCCH2CH2OCH2CH2CN)2] ( 4 ) both contain infinite chains with respectively (CuI)2 rings and distorted (CuI)4 cubes as building units. Solvothermal reaction of CuI with the thiacrown ether 1, 4, 10‐trithia‐15‐crown‐5 (1, 4, 10TT15C5) in acetonitrile affords the lamellar coordination polymer equation/tex2gif-stack-5.gif[(CuI)3(1, 4, 10TT15C5)] ( 7 ) in which copper atoms of individual CuI double chains are bridged in a μ‐S1, S4 manner. The third sulphur atom S10 of the thiacrown ether coordinates a copper(I) atom from a parallel chain to generate a 2D network.  相似文献   

13.
The hydroformylation of acrylonitrile (VCN) using Co2(CO)8/L (L  HN(CH2CN)2, H2C(CH2)3NMe, Me2N(CH2)2NMeH, PPh3, and PCy3) has been examined in methanol solvent. Four reaction pathways are observed which are dependent on L. With no L or with L  HN(CH2CN)2, the reaction produces the desired acetal (MeO)2CHCH2CH2CN. For the more basic amines the reaction produces ~ 50% yields of hydrodimerization products NCCHMe(CH2)2CN/NC(CH2)4CN in a 10/1 ratio and an ~ 30% yield of the hydrogenation product CH3CH2CN. These reactions are shown to be metal catalyzed. The main reaction for Co2(CO)8/PR3 catalyzed systems appears to be a classical Michael addition reaction of the solvent, methanol, with acrylonitrile to give MeOCH2CH2CN. Evidence is given to show that this reaction is catalyzed by phosphine which has dissociated under reaction conditions and not by a ligated cobalt complex.  相似文献   

14.
Two mercury(II) cyanide complexes of N-ethylthiourea (Ettu) and N-propylthiourea (Prtu) ligands, [Hg(Ettu)2(CN)2] (1) and [Hg(Prtu)2(CN)2] (2), were prepared and their crystal structures were determined by X-ray crystallography. In both structures, the mercury atom is coordinated to two sulfur atoms of thioureas and two cyanide carbon atoms in a pseudo-tetrahedral mode with the bond angles in the range of 90.52(11)–162.2(3)°. The structures are stabilized by N-H—S, N-H—N, and C-H—N intramolecular and intermolecular hydrogen bonds.  相似文献   

15.
Pentaquadrupole (QqQqQ) mass spectrometry is used to explore the abilities of gaseous SFn+ (n = 1–5) ions to form adducts and dimers with three π-electron rich molecules—benzene, acetonitrile, and pyridine, whereas ab initio calculations estimate most feasible structures, bond dissociation energies (BDEs), and reaction enthalpies of the observed products. With benzene, SF+ reacts by net H-by-SF replacement. As suggested by the calculations, this novel benzene reaction forms ionized benzenesulfenyl fluoride, C6H5–SF, via a Wheland-type intermediate that spontaneously loses a H atom. SF3+ forms a rare, loosely bonded π complex with benzene, [Bz ⋯ SF3]+, which is stable toward both H and HF loss. No dimer, Bz2SF3+, is formed. According to calculations, an unsymmetrically bonded, π-coordinated Bz2SF3+ dimer exists, i.e. (Bz–SF3 ⋯ Bz)+, but its formation from [Bz ⋯ SF3]+ is endothermic; hence, thermodynamically unfavorable. With acetonitrile, SF2, SF3+, and SF5+ form both adducts and dimers. CH3–C·N–SF2+ (a new distonic ion) and CH3CN–SF5+ are covalently bonded, but CH3CN ⋯ SF3+ is loosely bonded. The binding natures of the acetonitrile adducts are reflected in the dimers; [CH3CN–SF2 ⋯ NCCH3] and [CH3CN–SF5 ⋯ NCCH3]+ are unsymmetrically bonded, whereas [CH3CN ⋯ SF3 ⋯ NCCH3]+ is symmetrically and loosely bonded. Such dimers as [CH3CN ⋯ SF3 ⋯ NCCH3]+ are ideal for measurements of ion affinity via the Cooks’ kinetic method. With pyridine, only SF3+ forms adduct and dimer. Py–SF3+ is covalently bonded through nitrogen; [Py ⋯ SF3 ⋯ Py]+ is loosely but unsymmetrically bonded. The unsymmetric 2.28 and 2.44 Å long N–S bonds in [Py ⋯ SF3 ⋯ Py]+, which are expected to rapidly interconvert, result likely from steric hindrance that forces orthogonal alignment of the two pyridine rings. Most observed adducts and dimers display relatively high BDEs, i.e. they are formed in thermodynamically favorable reactions. The extents of dissociation of the adducts and dimers observed in MS3 experiments reflect the structures and BDEs predicted by the calculations.  相似文献   

16.
An ESR study of γ-irradiated single crystals of cyanoacetyl hydrazide indicates that the free radical formed is the corresponding hydrazyl (NCCH2CO?NH2), in which a large fraction of the unpaired spin density is located on the α-nitrogen atom.  相似文献   

17.
Reactivity of Phosphorus Pentahalides with Transition Metal Carbonyls. III. Reactivity of PBr5 with Hexacarbonyls of Molybdenum and Tungsten PBr5 reacts with M(CO)6 (M = Mo, W) already at room temperature in CH3CN as solvent. Independend on the reaction condition WBr4(CH3CN)2 was obtained in the reaction of PBr5 with W(CO)6. In the case of Mo(CO)6 the complexes MoBr3(CH3CN)3 and MoBr4(CH3CN)2, respectively, were isolated depending on the amount of PBr5 and the reaction temperature. The structure of the products is discussed on the basis of the IR spectra and of magnetic moments.  相似文献   

18.
Summary Monocarbonyls of manganese(I) with two chelating diphosphinestrans-[Mn(CO)(diphos)2(L)]A, [diphos = 1,2-bis(diphenylphosphino)ethane, dppe, or bis(diphenylphosphino)methane, dppm; L=nitriles, NCR (NCMe, NCEt, NCPh, or NCCH2Ph), dinitriles, NCGCN (NCCH2CN, NCCH2CH2CN, oro-(NC)2C6H4), isonitriles, CNR, (CNPh, or CNBut); A = C1O 4 or PF 6 ],trans-[(Mn(CO)(dppm)2)2(-NCCH2CH2CN)](ClO4)2 and the monocarbonyl with one diphosphine,mer-[Mn(CO)(dppe)(CNBut)3]ClO4, have been prepared fromtrans-[Mn(CO)(diphos)2Br].In this paper we have adopted the convention that gives positive shift to signals at higher frequency of ext. H3PO4.  相似文献   

19.
The mechanisms of CH2SH with NO2 reaction were investigated on the singlet and triplet potential energy surfaces (PES) at the BMC-CCSD//B3LYP/6-311 + G(d,p) level. The result shows that the title reaction is more favourable on the singlet PES thermodynamically, and it is less competitive on the triplet PES. On the singlet PES, the initial addition of CH2SH with NO2 leads to HSCH2NO2 (IM2) without any transition state, followed by a concerted step involving C–N fission and shift of H atom from S to O giving out CH2S + trans-HONO, which is the major products of the title reaction. With higher barrier height, the minor products are CH2S + HNO2, formed by a similar concerted step from the initial adduct HSCH2ONO (IM1). The direct abstraction route of H atom in SH group abstracted by O atom might be of some importance. It starts from the addition of the reactants to form a weak interaction molecular complex (MC3), subsequently, surmounts a low barrier height leading to another complex (MC2), which gives out CH2S + trans-HONO finally. Other direct hydrogen abstraction channels could be negligible with higher barrier heights and less stable products.  相似文献   

20.
Reactions of NCCH2COOMe 1a and CH2(CN)2 1b with 2,4‐dinitrofluorobenzene 2 at the presence of Et3 N result in deeply colored crystalline stable salts 4a,4b with anions that contain a system of conjugated bonds. Similar reaction of 2 with phosphorus‐containing zwitterion 6 bearing ethoxy‐ and cyano‐groups at the carbanion center is the first example of the reaction leading to the formation of P‐zwitterion 9 with a negatively charged heptatriene moiety. This reaction proceeds via a new route of decomposition of the intermediate σ‐complex 7 occurring with formation of ethylfluoroformate. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:108–115, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20267  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号