首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To further clarify the role of dopant solvent in proton transfer in atmospheric pressure photoionization (APPI), we employ ultrahigh-resolution FT-ICR mass analysis to identify M(+*), [M + H](+), [M - H](-), and [M + D](+) species in toluene or perdeuterotoluene for an equimolar mixture of five pyrrolic and pyridinic nitrogen heterocyclic model compounds, as well as for a complex organic mixture (Canadian Athabasca bitumen middle distillate). In the petroleum sample, the protons in the [M + H](+) species originate primarily from other components of the mixture itself, rather than from the toluene dopant. In contrast to electrospray ionization, in which basic (e.g., pyridinic) species protonate to form [M + H](+) positive ions and acidic (e.g., pyrrolic) species deprotonate to form [M - H](-) negative ions, APPI generates ions from both basic and acidic species in a single positive-ion mass spectrum. Ultrahigh-resolution mass analysis (in this work, m/Deltam(50%) = 500,000, in which Deltam(50%) is the mass spectral peak full width at half-maximum peak height) is needed to distinguish various close mass doublets: (13)C versus (12)CH (4.5 mDa), (13)CH versus (12)CD (2.9 mDa), and H(2) versus D (1.5 mDa).  相似文献   

2.
A novel, gas-tight API interface for gas chromatography–mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M?+?77]+ in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI. Graphical Abstract
?  相似文献   

3.
The ionization mechanism in the novel atmospheric pressure photoionization mass spectrometry (APPI-MS) in negative ion mode was studied thoroughly by the analysis of seven compounds in 17 solvent systems. The compounds possessed either gas-phase acidity or positive electron affinity, whereas the solvent systems had different polarities and gas-phase acidities and some of them positive electron affinities. The analytes that possessed gas-phase acidity formed deprotonated ions in proton transfer; in addition, fragments and solvent adducts were observed. The compounds of positive electron affinity formed negative molecular ions by electron capture or charge exchange and substitution products of form [M - X + O](-) by substitution reactions. The efficiency of deprotonation was decreased if the solvent used possessed higher gas-phase acidity than the analyte. Solvents of positive electron affinity captured thermal electrons and deteriorated the ionization of all the analytes. Also, the proportion of substitution products was affected by the solvent. Finally, the performances of negative ion APPI and negative ion APCI were compared. The sensitivity for the studied compounds was better in APPI, but the formation of substitution products was lower in APCI.  相似文献   

4.
Atmospheric pressure photoionization (APPI) is a novel method of ionization in liquid chromatography/mass spectrometry (LC/MS). It was originally developed in order to broaden the range of LC/MS ionizable compounds towards less polar compounds that cannot be analyzed by electrospray (ESI) and atmospheric pressure chemical ionization (APCI). Studies done thus far have shown that non-polar compounds that earlier were not ionizable in LC/MS can indeed be ionized by the use of APPI. However, the best ionization efficiency for low polarity samples has been achieved with low proton affinity (PA) solvents that are not suitable in reversed-phase LC (RP-LC). Here it is demonstrated that the signals for analytes with low proton affinities in acetonitrile can be increased 100-fold by using anisole as the dopant for APPI, which takes the sensitivity to the same level achieved in the analysis of high PA analytes.  相似文献   

5.
Unusual ionization behavior was observed with novel antineoplastic curcumin analogues during the positive ion mode of matrix‐assisted laser desorption ionization (MALDI) and dopant‐free atmospheric pressure photoionization (APPI). The tested compounds produced an unusual significant peak designated as [M ? H]+ ion along with the expected [M + H]+ species. In contrast, electrospray ionization, atmospheric pressure chemical ionization and the dopant‐mediated APPI (dopant‐APPI) showed only the expected [M + H]+ peak. The [M ? H]+ ion was detected with all evaluated curcumin analogues including phosphoramidates, secondary amines, amides and mixed amines/amides. Our experiments revealed that photon energy triggers the ionization of the curcumin analogues even in the absence of any ionization enhancer such as matrix, solvent or dopant. The possible mechanisms for the formation of both [M ? H]+ and [M + H]+ ions are discussed in this paper. In particular, three proposed mechanisms for the formation of [M ? H]+ were evaluated. The first mechanism involves the loss of H2 from the protonated [M + H]+ species. The other two mechanisms include hydrogen transfer from the analyte radical cation or hydride abstraction from the neutral analyte molecule. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
An electron capture (EC) ionization mechanism has been found to be highly efficient in negative-ion atmospheric pressure photoionization (APPI) for the analysis of compounds with positive electron affinity (EA). Using negative-ion APPI, we first report the sensitive detection of natural electrophores with limited polarity, such as fullerenes and perfluorinated compounds, by mass spectrometry (MS). Using direct infusion on a quadrupole time-of-flight (QTOF) mass spectrometer, the limits of detection (LODs) for C(60) and perfluoromethylcyclohexane were determined to be 0.15 pg (0.2 fmol) and 1 femtoliter (fL) ( approximately 1.5 pg or 4.3 fmol), respectively. As the EA of the analyte increases, the detection sensitivity is enhanced. Making use of the accurate mass measurement capability of the QTOF mass spectrometer, we were able to investigate the elemental composition of the ions in each spectrum and attribute the observed high sensitivity to an EC-initiated ionization process. The proposed EC ionization mechanism is further supported by the observation of a dissociative EC reaction of pentafluorobenzyl (PFB)-derivatized phenols. The analysis of phenols by EC-APPI of their PFB derivatives resulted in very high sensitivity, with the lowest reported LOD of approximately 0.17 pg (0.5 fmol) being for 2,4-dinitrophenol. For future LC/EC-APPI-MS applications, the effect of additives and solvents on sensitivity was also tested and reported.  相似文献   

7.
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).  相似文献   

8.
The on-line coupling of capillary electrophoresis (CE) and mass spectrometry (MS) via atmospheric pressure photoionization (APPI) is demonstrated. To achieve CE-APPI-MS, an adapted coaxial sheath-flow interface was combined with an ion-trap mass spectrometer equipped with an APPI source originally designed for liquid chromatography-MS. Effective photoionization of test compounds was accomplished after optimization of several interface and MS parameters, and of the composition and flow rate of the sheath liquid. Further enhancement of the ionization efficiency could be achieved by adding a dopant, such as acetone or toluene, to the sheath liquid to aid indirect ionization. Acetone significantly increased the ionization of the polar test compounds by proton transfer, while toluene was more useful for the enhanced formation of molecular ions from nonpolar compounds. The effect of several common CE background electrolytes (BGEs) on the APPI-MS response of the analytes was also studied. It appeared that in contrast with electrospray ionization, nonvolatile BGEs do not cause suppression of analyte signals using APPI. Therefore, in CE-APPI-MS, a variety of buffers can be chosen, which obviously is a great advantage during method development. Remarkably, also sodium dodecyl sulfate (SDS) did not affect the photoionization of the test compounds, indicating a strong potential of APPI for the on-line coupling of micellar electrokinetic chromatography (MEKC) and MS.  相似文献   

9.
The ionization mechanism of negative ion-direct analysis in real time (NI-DART) has been investigated using over 42 compounds, including fullerenes, perfluorocarbons (PFC), organic explosives, phenols, pentafluorobenzyl (PFB) derivatized phenols, anilines, and carboxylic acids, which were previously studied by negative ion-atmospheric pressure photoionization (NI-APPI). NI-DART generated ionization products similar to NI-APPI, which led to four ionization mechanisms, including electron capture (EC), dissociative EC, proton transfer, and anion attachment. These four ionization mechanisms make both NI-DART and NI-APPI capable of ionizing a wider range of compounds than negative ion-atmospheric pressure chemical ionization (APCI) or negative ion-electrospray ionization (ESI). As the operation of NI-DART is much easier than that of NI-APPI and the gas-phase ion chemistry of NI-DART is more easily manipulated than that of NI-APPI, NI-DART can be therefore used to study in detail the ionization mechanism of LC/NI-APPI-MS, which would be a powerful methodology for the quantification of low-polarity compounds. Herein, one such application has been further demonstrated in the detection and identification of background ions from LC solvents and APPI dopants, including water, acetonitrile, chloroform, methylene chloride, methanol, 2-propanol, hexanes, heptane, cyclohexane, acetone, tetrahydrofuran (THF), 1,4-dioxane, toluene, and anisole. Possible reaction pathways leading to the formation of these background ions were further inferred. One of the conclusions from these experiments is that THF and 1,4-dioxane are inappropriate to be used as solvents and/or dopants for LC/NI-APPI-MS due to their high reactivity with source basic ions, leading to many reactant ions in the background.  相似文献   

10.
The usefulness of atmospheric pressure photoionization (APPI) is difficult to evaluate for unknowns due to the fragmented literature. Specifically, the variation of dopants with a wide set of compounds or the use of APPI in the negative mode have rarely been explored. Thirty compounds were selected that were not suitable for ESI with a wide variety of functional groups and investigated with atmospheric pressure chemical ionization (APCI) and APPI in the positive and negative ion modes. The influence of the mobile phase (eluents containing acetonitrile or methanol) and – for APPI – four different dopants (acetone, chlorobenzene, toluene, and toluene/anisole) were explored. Stepwise variation of the organic mobile phase allowed to elucidate the ionization mechanism. Atmospheric pressure photoionization was especially useful for compounds, where the M●+ and not the [M + H]+ was formed. The dopants chlorobenzene and anisole promoted the formation of molecular ions M●+ for about half of the compounds, and its formation was also positively influenced by the use of mobile phases containing methanol. In the negative ion mode, APPI offered no advantage toward APCI. Best results were generally achieved with the dopant chlorobenzene, establishing that this dopant is suitable for a wide set of compounds. For one quarter of the compounds, significantly better results were achieved with mobile phases containing methanol for both APPI and APCI than those with acetonitrile, but only in the positive mode. With either of the methods – APPI or APCI – about 10% of the compounds were not detected. Strategies to get results quickly with difficult unknowns will be discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Atmospheric pressure photoionization (APPI) using a dopant enables both polar and nonpolar compounds to be analyzed by LC/MS. To date, the charge exchange ionization pathway utilized for nonpolar compounds has only been efficient under restrictive conditions, mainly because the usual charge exchange reagent ions--the dopant photoions themselves--tend to be consumed in proton transfer reactions with solvent and/or dopant neutrals. This research aims to elucidate the factors affecting the reactivities of substituted-benzene dopant ions; another, overriding, objective is to discover new dopants for better implementing charge exchange ionization in reversed-phase LC/MS applications. The desirable properties for a charge exchange dopant include low reactivity of its photoions with solvent and dopant neutrals and high ionization energy (IE). Reactivity tests were performed for diverse substituted-benzene compounds, with substituents ranging from strongly electron withdrawing (EW) to strongly electron donating (ED). The results indicate that both the tendency of a dopant's photoions to be lost through proton transfer reactions and its IE depend on the electron donating/withdrawing properties of its substituent(s): ED groups decrease reactivity and IE, while EW groups increase reactivity and IE. Exceptions to the reactivity trend for dopants with ED groups occur when the substituent is itself acidic. All told, the desirable properties for a charge exchange dopant tend towards mutual exclusivity. Of the singly-substituted benzenes tested, chloro- and bromobenzene provide the best compromise between low reactivity and high IE. Several fluoroanisoles, with counteracting EW and ED groups, may also provide improved performance relative to the established dopants.  相似文献   

12.
A comparison was made between the electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) tandem mass spectrometric (MS/MS) responses of eleven ultraviolet (UV) filters. Four of the target compounds were favourably ionized in negative ion mode, and the other seven compounds in positive ion mode. For nine of the compounds APPI generated a similar response to that of ESI, but the APPI signal‐to‐noise (S/N) ratios were 1.3–60 times higher. The two most polar of the UV filter compounds (PBSA and BP‐4) were more efficiently ionized by ESI, offering higher signal intensities and lower detection limits. APPI was, however, less susceptible to ion suppression than ESI when real samples were injected. In order to optimize the APPI conditions different dopant solvents were examined to enhance the efficiency of the photoionization process. Among the evaluated dopants, toluene was selected as the best compromise. At a toluene flow rate of 10% of the solvent flow rates the ionization response increased by a factor of 40–50 over the use of no dopant for the compounds in positive ion mode and by more than 300 for the compounds in negative ion mode. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The role of propionitrile in the production of [M+H]+ under atmospheric pressure photoionization (APPI) was investigated. In dopant-assisted APPI using acetone and anisole, protonated acetone and anisole radical cations were the most prominent ions observed. In dopant-free or direct APPI in acetonitrile, however, a major ion in acetonitrile was detected and identified as propionitrile, using high accuracy mass measurement and collision induced dissociation studies. Vaporizing ca. 10(-5) M althiazide and bendroflumethazide under direct APPI in acetonitrile produced their corresponding protonated species [M+H]+. In addition to protonated acetonitrile, its dimers, and acetonitrile/water clusters, protonated propionitrile, propionitrile dimer, and propionitrile/water clusters were also observed. The role of propionitrile, an impurity in acetonitrile and/or a possible product of ion-molecule reaction, in the production of [M+H]+ of althiazide and bendroflumethazide was further investigated in the absence of dopant using propionitrile-d5. The formation of [M+D]+ species was observed, suggesting a possible role of propionitrile in the protonation process. Additionally, an increase in the [M+H]+ signal of althiazide and bendroflumethazide was observed as a function of propionitrile concentration in acetonitrile. Theoretical data from the literature supported the assumption that one possible mechanism, among others, for the formation of [M+H]+ could be attributed to photo-initiated isomerization of propionitrile. The most stable isomers of propionitrile, based on their calculated ionization energy (IE) and relative energy (DeltaE), were assumed to undergo proton transfer to the analytes, and mechanisms were proposed.  相似文献   

14.
Ivano Marchi 《Talanta》2009,78(1):1-610
This review presents the state-of-the-art techniques that couple liquid chromatography (LC) and mass spectrometry (MS) via atmospheric pressure photoionization (APPI). The different ionization mechanisms are discussed as well as the influence of the mobile phase composition, the nature of the dopant, etc. A comparison with other ionization sources, such as electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI), is reported, and the combination of APPI with these sources is also discussed. Several applications, covering the time period of 2005-2008, for the analysis of drugs, lipids, natural compounds, pesticides, synthetic organics, petroleum derivatives, and other substances are presented.  相似文献   

15.
Multiply charged anions (MCAs) represent highly energetic species in the gas phase but can be stabilized through formation of molecular clusters with solvent molecules or counterions. We explore the intramolecular stabilization of excess negative charge in gas-phase MCAs by probing the intrinsic stability of the [adenosine 5'-triphosphate-2H](2-) ([ATP-2H](2-)), [adenosine 5'-diphosphate-2H](2-) ([ADP-2H](2-)), and H(3)P(3)O(10)(2-) dianions and their protonated monoanionic analogues. The relative activation barriers for decay of the dianions via electron detachment or ionic fragmentation are investigated using resonance excitation of ions isolated within a quadrupole trap. All of the dianions decayed via ionic fragmentation demonstrating that the repulsive Coulomb barriers (RCB) for ionic fragmentation lie below the RCBs for electron detachment. Both the electrospray ionization mass spectra (ESI-MS) and total fragmentation energies for [ATP-2H](2-), [ADP-2H](2-), and H(3)P(3)O(10)(2-) indicate that the multiply charged H(3)P(3)O(10)(2-) phosphate moiety is stabilized by the presence of the adenosine group and the stability of the dianions increases in the order H(3)P(3)O(10)(2-) < [ADP-2H](2-) < [ATP-2H](2-). Fully optimized, B3LYP/6-31+G* minimum energy structures illustrate that the excess charges in all of the phosphate anions are stabilized by intramolecular hydrogen bonding either within the phosphate chain or between the phosphate and the adenosine. We develop a model to illustrate that the relative magnitudes of the RCBs and hence the stability of these ions is dominated by the extent of intramolecular hydrogen bonding.  相似文献   

16.
A comprehensive atmospheric pressure photoionization (APPI) mass spectrometry investigation of hexamethonium bromide is reported. This bisquaternary ammonium salt is a model system for the investigation of multiply charged species and elucidation of ion formation processes. It has been used to elucidate the physicochemical phenomenon occurring when photoionization is carried out at atmospheric pressure. First, the in-source fragmentations were studied for aqueous solutions of the salt with the photoionization lamp switched off, i.e. under thermospray conditions. It is shown that, in this mode of operation, fragmentations are minor and may be classified into two classes, namely dequaternization and charge separation, arising from the two precursors, M2+ and [M+Br]+. Second, the fragmentation patterns have been monitored in dopant- assisted APPI for different dopants (toluene, toluene-d8, anisole and hexafluorobenzene) at various amounts. At low dopant flow rates, the [M+Br]+ and M2+ ions are still observed. As the flow rate is increased, these precursor ions lose intensity and are finally suppressed for all three dopants. Comparison of toluene and toluene-d8 reveals that H atoms may be transferred from the dopant to the molecular ions, very likely mediated by the solvent. The role of the solvent (water) was also investigated by using heavy water. Apart from the thermospray fragmentations, which are also observed in APPI, several fragmentation pathways appear to be specific to the photoionization process. Photoionization efficiencies are measured by determination of the relative photoionization cross sections with respect to toluene. It is found that, when the ionization efficiencies are taken into account, the depletion of the precursors as a function of the dopant flow rates is the same for all three dopant molecules. This result shows that the precursor ions are depleted by reactions with the photoelectrons released from the dopant. Three additional mechanisms are proposed to account for this effect: electron transfer or H atom transfer from negatively charged water nanodroplets and H atom transfer from the dopant.  相似文献   

17.
In the novel atmospheric pressure photoionization-mass spectrometry the ionization efficiency has been observed to decrease when the solvent flow rate is increased. The effect of the flow rate on the ionization efficiency was studied by comparing the behavior of two analytes, one of which is ionized through charge exchange, the other through proton transfer. Additional information about the ion loss mechanisms was obtained by comparing results obtained with two different APPI ion sources: a Sciex prototype and the Agilent/Syagen APPI source. In addition to the measurements done by using the mass analyzer, the total ion current in the ion source was obtained by measuring the currents of the ions arriving at curtain/end plate and orifice/capillary of the two mass spectrometers. The total ion current measurements showed a significant decrease at high solvent flow rates. Loss of dopant radical cations was thought to be the reason for the signal decrease of the analytes formed through charge exchange. Analytes formed through proton transfer were not as seriously ected by the high solvent flow rates, but some saturation of their signal was nevertheless observed. Loss of photons through absorption by solvent vapor is another mechanism that can be held responsible for a reduction of the total number of ions produced by the APPI source.  相似文献   

18.
A series of seven typical matrix-assisted laser desorption/ionization (MALDI) matrices has been investigated by means of electron capture negative ion mass spectrometry (ECNI-MS). It has been shown that the most effective matrices form deprotonated negative ions predominantly in the low-energy region. Relative dissociative cross sections have been measured for all molecules under investigation. The relative integrated abundance of [M - H](-) ion formation in the series changes by four orders of magnitude. It has been shown that 2,5-DHB (gentisic acid), one of the most effective MALDI matrices, has maximal relative intensity of [M - H](-) formation at the energy approximately equal 0.8 eV. This result is in accordance with a finding of Frankevich and Zenobi [Book of Abstracts, Workshop-school "Mass spectrometry in chemical physics, bio-physics and environmental sciences", Zvenigorod, Russia, April, 25-26, 2002, p. 40] that a probable origin of negative ions in MALDI is the process of low-energy (0.5-1 eV) dissociative electron capture by matrix molecules.  相似文献   

19.
The minimal essential section of DNA helices, the dinucleoside phosphate deoxyguanylyl-3',5'-deoxycytidine dimer octahydrate, [dGpdC](2), has been constructed, fully optimized, and analyzed by using quantum chemical methods at the B3LYP/6-31+G(d,p) level of theory. Study of the electrons attached to [dGpdC](2) reveals that DNA double strands are capable of capturing low-energy electrons and forming electronically stable radical anions. The relatively large vertical electron affinity (VEA) predicted for [dGpdC](2) (0.38 eV) indicates that the cytosine bases are good electron captors in DNA double strands. The structure, charge distribution, and molecular orbital analysis for the fully optimized radical anion [dGpdC](2)(·-) suggest that the extra electron tends to be redistributed to one of the cytosine base moieties, in an electronically stable structure (with adiabatic electron affinity (AEA) 1.14 eV and vertical detachment energy (VDE) 2.20 eV). The structural features of the optimized radical anion [dGpdC](2)(·-) also suggest the probability of interstrand proton transfer. The interstrand proton transfer leads to a distonic radical anion [d(G-H)pdC:d(C+H)pdG](·-), which contains one deprotonated guanine anion and one protonated cytosine radical. This distonic radical anion is predicted to be more stable than [dGpdC](2)(·-). Therefore, experimental evidence for electron attachment to the DNA double helices should be related to [d(G-H)pdC:d(C+H)pdG](·-) complexes, for which the VDE might be as high as 2.7 eV (in dry conditions) to 3.3 eV (in fully hydrated conditions). Effects of the polarizable medium have been found to be important for increasing the electron capture ability of the dGpdC dimer. The ultimate AEA value for cytosine in DNA duplexes is predicted to be 2.03 eV in aqueous solution.  相似文献   

20.
Atmospheric pressure photoionization (APPI) was assessed for the mass spectrometric analysis of polybromodiphenyl ethers (PBDEs) on the basis of a set of 17 standard compounds. Positive and negative ionization modes were both investigated. M(+.) ions were formed under positive ion conditions whereas the negative ion mode yielded [M-Br+O](-) ions. The behavior of these APPI-produced ions towards collisional activation was studied using an ion trap mass spectrometer. In positive ion mode, the loss of Br(2) was one of the major fragmentation pathways, and was favored for ortho-substituted PBDEs. Conversely, the loss of COBr(.) occurred only for non-ortho-substituted congeners. The collisional excitation of [M-Br+O](-) ions in the ion trap also led to the loss of Br(2), to the elimination of HBr, and to the formation of product ions by cleavage of the ether bond. The formation of para-quinone radical anions was observed for PBDEs ranging from penta- to hepta-congeners, whereas brominated aromatic carbanions were formed preferentially for the most brominated PBDEs studied in this work (hepta- or deca-BDEs). M(+.) ions did not undergo this fragmentation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号